如圖,在△ABC中,D為AB邊上一點(diǎn)、F為AC的中點(diǎn),過(guò)點(diǎn)C作CE//AB交DF的延長(zhǎng)線(xiàn)于點(diǎn)E,連結(jié)AE.
(1)求證:四邊形ADCE為平行四邊形.
(2)若EF=2,,求DC的長(zhǎng).
(1)證明:∵CE//AB,∴∠DAF=∠ECF.
∵F為AC的中點(diǎn),∴AF=CF.
在△DAF和△ECF中
∴ △DAF≌△ECF.
∴ AD=CE.
∵CE//AB,
∴ 四邊形ADCE為平行四邊形. (2)作FH⊥DC于點(diǎn)H.
∵ 四邊形ADCE為平行四邊形.
∴ AE//DC,DF= EF=2, ∴∠FDC =∠AED=45°.
在Rt△DFH中,∠DHF=90°,DF=2,∠FDC=45°,
∴ sin∠FDC=,得FH=2,
tan∠FDC=,得DH=2.
在Rt△CFH中,∠FHC=90°,FH=2,∠FCD=30°,∴ FC=4.
由勾股定理,得HC=.
∴ DC=DH+HC=2+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
觀察下面的式子:(12分)
S1=1++,S2=1++,S3=1++…Sn=1++
(1)計(jì)算:= ,= ;猜想= (用n的代數(shù)式表示);
(2)計(jì)算:S=+++…+(用n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(1)如圖1,點(diǎn)E、F分別是正方形ABCD的邊BC、CD上的點(diǎn),∠EAF=45°,連接EF,
則EF、BE、FD之間的數(shù)量關(guān)系是:EF=BE+FD.連結(jié)BD,交AE、AF于點(diǎn)M、N,且MN、BM、DN滿(mǎn)足,請(qǐng)證明這個(gè)等量關(guān)系;
(2)在△ABC中, AB=AC,點(diǎn)D、E分別為BC邊上的兩點(diǎn).
①如圖2,當(dāng)∠BAC=60°,∠DAE=30°時(shí),BD、DE、EC應(yīng)滿(mǎn)足的等量關(guān)系是__________________;
②如圖3,當(dāng)∠BAC=,(0°<<90°),∠DAE=時(shí),BD、DE、EC應(yīng)滿(mǎn)足的等量關(guān)系是____________________.【參考:】
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線(xiàn)與x軸交點(diǎn)為A、B(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C.
(1)試用含m的代數(shù)式表示A、B兩點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)B在原點(diǎn)的右側(cè),點(diǎn)C在原點(diǎn)的下方時(shí),若是等腰三角形,求拋物線(xiàn)的解析式;
(3)已知一次函數(shù),點(diǎn)P(n,0)是x軸上一個(gè)動(dòng)點(diǎn),在(2)的條件下,過(guò)點(diǎn)P作垂直于x軸的直線(xiàn)交這個(gè)一次函數(shù)的圖象于點(diǎn)M,交拋物線(xiàn)于點(diǎn)N,若只有當(dāng)時(shí),點(diǎn)M位于點(diǎn)N的下方,求這個(gè)一次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com