【題目】已知如圖,長方體的長,寬,高,點上,且,一只螞蟻如果沿沿著長方體的表面從點爬到點,需要爬行的最短距離是多少?

【答案】需要爬行的最短距離是cm

【解析】

將長方體沿CHHE、BE剪開,然后翻折,使面ABCD和面BEHC在同一個平面內(nèi),連接AM;或?qū)㈤L方體沿CH、GDGH剪開,然后翻折,使面ABCD和面DCHG在同一個平面內(nèi),連接AM;或?qū)㈤L方體沿ABAF、EF剪開,然后翻折,使面ABEF和面BEHC在同一個平面內(nèi),連接AM;再分別在RtADM、RtABMRtACM中,利用勾股定理求得AM的長,比較大小即可求得需要爬行的最短路程.

解:將長方體沿CH、HEBE剪開,然后翻折,使面ABCD和面BEHC在同一個平面內(nèi),連接AM,如圖1,

由題意可得:MDMCCD51015cm,AD15cm,

RtADM中,根據(jù)勾股定理得:AMcm;

將長方體沿CHGD、GH剪開,然后翻折,使面ABCD和面DCHG在同一個平面內(nèi),連接AM,如圖2,

由題意得:BMBCMC51520cmAB10cm,

RtABM中,根據(jù)勾股定理得:AMcm,

將長方體沿AB、AF、EF剪開,然后翻折,使面ABEF和面BEHC在同一個平面內(nèi),連接AM,如圖3,

由題意得:ACABCB101525cm,MC5cm

RtACM中,根據(jù)勾股定理得:AMcm,

,

,

則需要爬行的最短距離是cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D,E,F分別是AB,BC,CA的中點,AP是邊BC上的高

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:∠DEF=DPF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EF為對角線BD上的兩點,且∠DAE=∠BCF

求證:(1AECF

2)四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,對稱軸為直線x=1的拋物線y=﹣x2+bx+cx軸交于點A和點B,與y軸交于點C,且點B的坐標為(﹣1,0)

(1)求拋物線的解析式并作出圖象;

(2)D的坐標為(0,1),點P是拋物線上的動點,若△PCD是以CD為底的等腰三角形,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=3,BC=4,點PAB邊上任一點,過P分別作PEACE,PFBCF,則線段EF的最小值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BACBC于點D,AE⊥BC,垂足為E,且CF∥AD.

(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE=   度;

(2)若圖1中的∠B=x,∠ACB=y,則∠CFE=   ;(用含x、y的代數(shù)式表示)

(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結(jié)論還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:DHF=DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點DOB的中點,點E是線段AB上的動點,連結(jié)DE,作DFDE,交OA于點F,連結(jié)EF.已知點EA點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.

(1)如圖1,當(dāng)t=3時,求DF的長.

(2)如圖2,當(dāng)點E在線段AB上移動的過程中,DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.

(3)連結(jié)AD,當(dāng)ADDEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,重慶被抖音抖成了網(wǎng)紅城市,其中解放碑的游客數(shù)量明顯高于去年同期,如圖,小冉和小田決定用所學(xué)知識測量解放碑AB的高度,按照以下方式合作并記錄所得數(shù)據(jù):小冉從大廈DG的底端D點出發(fā),沿直線步行10.2米到達E點,再沿坡度i=1:2.4的斜坡EF行走5.2米到達F點,最后沿直線步行30米到達解放碑底部B點,小田從大廈DG的底端乘直行電梯上行到離D51.5米的頂端G點,從G點觀測到解放碑頂端A點的俯角為26°,若A,B,C,D,E,F(xiàn),G在同一平面內(nèi),且B,F(xiàn)C,E,D分別在同一水平線上,則解放碑AB的高度約為(  )米.(精確到0.1米,參考數(shù)據(jù):sin26°≈0.44,cos26°≈.90,tan26°≈0.49)

A. 29.0 B. 28.5 C. 27.5 D. 27.0

查看答案和解析>>

同步練習(xí)冊答案