【題目】計(jì)算。
(1) +(π﹣3.14)0+(﹣2)2
(2)(m﹣2n)2+(m+n)(m﹣n)
【答案】
(1)解:原式=4+1+4
=9;
(2)解:原式=m2+2n2﹣4mn+m2﹣n2
=2m2+n2﹣4mn
【解析】(1)分別根據(jù)負(fù)整數(shù)指數(shù)冪的計(jì)算法則、0指數(shù)冪的計(jì)算法則及數(shù)的乘方法則分別計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)混合運(yùn)算的法則進(jìn)行計(jì)算即可;(2)先根據(jù)完全平方公式及平方差公式分別計(jì)算出各數(shù),合并同類項(xiàng)即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的理解,了解aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍做了兩個(gè)正方體紙盒,已知第一個(gè)正方體紙盒棱長為3厘米,第二個(gè)正方體紙盒比第一個(gè)紙盒體積大189立方厘米,試求第二個(gè)正方體紙盒的棱長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,且弦CD⊥AB于點(diǎn)E,過點(diǎn)B作⊙O的切線與AD的延長線交于點(diǎn)F.
(1)若EN⊥BC于點(diǎn)N,延長NE與AD相交于點(diǎn)M.求證:AM=MD;
(2)若⊙O的半徑為10,且cosC =,求切線BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某!拔业闹袊鴫簟毖葜v比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前5名,不僅要了解自己的成績,還要了解這9名學(xué)生成績的
A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)E(x0,y0),F(x2,y2),點(diǎn)M(x1,y1)是線段EF的中點(diǎn),則, .在平面直角坐標(biāo)系中有三個(gè)點(diǎn)A(1,-1),B(-1,-1),C(0,1),點(diǎn)P(0,2)關(guān)于A的對稱點(diǎn)為P1(即P,A,P1三點(diǎn)共線,且PA=P1A),P1關(guān)于B的對稱點(diǎn)為P2,P2關(guān)于C的對稱點(diǎn)為P3,按此規(guī)律繼續(xù)以A,B,C為對稱點(diǎn)重復(fù)前面的操作,依次得到P4,P5,P6,…,則點(diǎn)P2015的坐標(biāo)是( )
A. (0,0) B. (0,2)
C. (2,-4) D. (-4,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地相距240千米,一輛公交車從A地出發(fā),以每小時(shí)48千米的速度駛向B地;一輛小轎從B地出發(fā),以每小時(shí)72千米的速度沿同條道路駛向A地。若小轎車從B地出發(fā)1小時(shí)后,公交車從A地出發(fā),兩車相向而行,求公交車出發(fā)后幾小時(shí)兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6,AC=8,則BC邊上中線AD的取值范圍為( ) (提示:可以構(gòu)造平行四邊形)
A.2<AD<14
B.1<AD<7
C.6<AD<8
D.12<AD<16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com