如圖.點(diǎn)A、B、C、D在⊙O上,AC⊥BD于點(diǎn)E,過點(diǎn)O作OF⊥BC于F,求證:
(1)△AEB∽△OFC;
(2)AD=2FO.
證明:(1)如圖,連接OB,則∠BAE=∠BOC,
∵OF⊥BC,∴∠COF=∠BOC。
∴∠BAE=∠COF。
又∵AC⊥BD,OF⊥BC,∴∠OFC=∠AEB=90°。
∴△AEB∽△OFC。
(2)∵△AEB∽△OFC,∴,即。
由圓周角定理,∠D=∠BCE,∠DAE=∠CBE,
∴△ADE∽△BCE。∴。
∴。
∵OF⊥BC,∴BC=2CF。
∴AD =2FO。
【解析】
試題分析:(1)連接OB,根據(jù)圓周角定理可得∠BAE=∠BOC,根據(jù)垂徑定理可得∠COF=∠BOC,再根據(jù)垂直的定義可得∠OFC=∠AEB=90°,然后根據(jù)兩角對應(yīng)相等,兩三角形相似證明即可;
(2)根據(jù)相似三角形對應(yīng)邊成比例可得,再根據(jù)圓周角定理求出∠D=∠BCE,∠DAE=∠CBE,然后求出△ADE和△BCE相似,根據(jù)相似三角形對應(yīng)邊成比例可得,從而得到,再根據(jù)垂徑定理BC=2FC,代入整理即可得證。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2x+2 | 3x-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
A、(0,0) | ||||||||
B、(
| ||||||||
C、(1,1) | ||||||||
D、(
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com