【題目】某教育主管部門針對中小學(xué)生非統(tǒng)考學(xué)科的教學(xué)情況進(jìn)行年終考評,抽取某校八年級部分同學(xué)的成績作為樣本,把成績按(優(yōu)秀)、(良好)、(及格)、(不及格)四個級別進(jìn)行統(tǒng)計(jì),并繪成如圖所示不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)求被抽取的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求的圓心角度數(shù);
(3)該校八年級有名學(xué)生,請估計(jì)達(dá)到、兩級的總?cè)藬?shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90,BC=6,AC=8.動點(diǎn)M從點(diǎn)B開始沿邊BC向點(diǎn)C以每秒1個單位長度的速度運(yùn)動,動點(diǎn)N從點(diǎn)C開始沿邊CA向點(diǎn)A以每秒2個單位長度的速度運(yùn)動,點(diǎn)M、N同時出發(fā),且當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.過點(diǎn)M作MD∥AC,交AB于點(diǎn)D,連接MN.設(shè)運(yùn)動時間為t秒(t≥0).
(1)當(dāng)t為何值時,四邊形ADMN為平行四邊形?
(2)是否存在t的值,使四邊形ADMN為菱形?若存在,求出t的值;若不存在,說明理由.并探究只改變點(diǎn)N的速度(勻速運(yùn)動),使四邊形ADMN在某一時刻為菱形,求點(diǎn)N的速度;
(3)如圖2,在整個運(yùn)動過程中,求出線段MN中點(diǎn)P所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的垂直平分線上.
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,是的弦,平分交于點(diǎn),連接、,過點(diǎn)作,交的延長線于點(diǎn).
(1)________(填“>”,“<”或“=”);
(2)求證:是的切線;
(3)若的直徑為10,sin∠BAC=,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今社會人們越來越離不開網(wǎng)絡(luò),電腦、手機(jī)被普遍使用,與此同時人們的視力也大大受到影響,2019年初某企業(yè)以25萬元購得某項(xiàng)護(hù)目鏡生產(chǎn)技術(shù)后,再投人100萬元購買生產(chǎn)設(shè)備,進(jìn)行該護(hù)目鏡的生產(chǎn)加工,已知生產(chǎn)這種護(hù)目鏡的成本價(jià)為每件20元,經(jīng)過市場調(diào)研發(fā)現(xiàn)該產(chǎn)品的銷售單價(jià)定在元比較合理,并且該產(chǎn)品的年銷售量(萬件)與銷售單價(jià) (元)之間的函數(shù)關(guān)系式為.(年獲利=年銷售收入-生產(chǎn)成本-投資成本)
(1)求該公司第一年的年獲利(萬元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最小虧損是多少?
(2)2020年初我國爆發(fā)新冠肺炎,該公司決定向紅十字會捐款20萬元,另外每銷售一件產(chǎn)品,就抽出1元錢作為捐款,若除去第一年的最大盈利(或最小虧損)以及第二年的捐款后,到2020年底,兩年的總盈利不低于57.5萬元,請你確定此時銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A′B′C′的位置,已知△ABC的面積為18,陰影部分三角形的面積為8,若AA′=1,則A′D的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們把關(guān)于某一點(diǎn)成中心對稱的兩條拋物線叫“孿生拋物線”;(1)已知拋物線L:y=﹣x2+4與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于C點(diǎn),求L關(guān)于坐標(biāo)原點(diǎn)O(0,0)的“孿生拋物線”W;(2)點(diǎn)N為坐標(biāo)平面內(nèi)一點(diǎn),且△BCN是以BC為斜邊的等腰直角三角形,在x軸是否存在一點(diǎn)M(m,0),使拋物線L關(guān)于點(diǎn)M的“孿生拋物線”過點(diǎn)N,如果存在,求出M點(diǎn)坐標(biāo);不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標(biāo)一工程隊(duì)負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù).該工程隊(duì)有兩種型號的挖掘機(jī),已知3臺型和5臺型挖掘機(jī)同時施工一小時挖土165立方米;4臺型和7臺型挖掘機(jī)同時施工一小時挖土225立方米.每臺型挖掘機(jī)一小時的施工費(fèi)用為300元,每臺型挖掘機(jī)一小時的施工費(fèi)用為180元.
(1)分別求每臺型, 型挖掘機(jī)一小時挖土多少立方米?
(2)若不同數(shù)量的型和型挖掘機(jī)共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費(fèi)用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個動點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個動點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com