綜合與探究:如圖,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè))與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q

(1)求點(diǎn)A,B,C的坐標(biāo)。

(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l分別交BD,BC于點(diǎn)M,N。試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由。

(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時,是否存在點(diǎn) Q,使△BDQ為直角三角形,若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。

解析:(1)當(dāng)y=0時,,解得,

∵點(diǎn)B在點(diǎn)A的右側(cè),

∴點(diǎn)A,B的坐標(biāo)分別為:(-2,0),(8,0)

當(dāng)x=0時,y=-4

∴點(diǎn)C的坐標(biāo)為(0,-4),

(2)由菱形的對稱性可知,點(diǎn)D的坐標(biāo)為(0,4).

設(shè)直線BD的解析式為ykxb,則.解得,k=,b=4.

∴直線BD的解析式為.

∵l⊥x軸,∴點(diǎn)M,Q的坐標(biāo)分別是(m,),(m,

如圖,當(dāng)MQ=DC時,四邊形CQMD是平行四邊形.

∴()-()=4-(-4)

化簡得:.解得,m1=0,(舍去)m2=4.

∴當(dāng)m=4時,四邊形CQMD是平行四邊形.

此時,四邊形CQBM是平行四邊形.

解法一:∵m=4,∴點(diǎn)P是OB中點(diǎn).∵l⊥x軸,∴l(xiāng)∥y軸.

∴△BPM∽△BOD.∴.∴BM=DM.

∵四邊形CQMD是平行四邊形,∴DMCQ∴BMCQ.∴四邊形CQBM為平行四邊形.

解法二:設(shè)直線BC的解析式為y=k1x+b1,則.解得,k1=,b1=-4

∴直線BC的解析式為y=x-4

又∵l⊥x軸交BC于點(diǎn)N.∴x=4時,y=-2. ∴點(diǎn)N的坐標(biāo)為(4,-2)由上面可知,點(diǎn)M,Q的坐標(biāo)分別為:(4,2),Q(4,-6).

∴MN=2-(-2)=4,NQ=-2-(-6)=4.∴MN=QN.

又∵四邊形CQMD是平行四邊形.∴DB∥CQ,∴∠3=∠4,

又∠1=∠2,∴△BMN≌△CQN.∴BN=CN.

∴四邊形CQBM為平行四邊形.

(3)拋物線上存在兩個這樣的點(diǎn)Q,分別是Q1(-2,0),Q2(6,-4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•太原)綜合與探究:
如圖,拋物線y=
1
4
x2-
3
2
x-4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時,是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

綜合與探究:
如圖,拋物線y=數(shù)學(xué)公式x2-數(shù)學(xué)公式x-4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時,是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

綜合與探究:
如圖,拋物線y=x2-x-4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時,是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山西卷)數(shù)學(xué)(解析版) 題型:解答題

綜合與探究:如圖,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè))與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q。

(1)求點(diǎn)A,B,C的坐標(biāo)。

(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線l分別交BD,BC于點(diǎn)M,N。試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由。

(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動時,是否存在點(diǎn) Q,使△BDQ為直角三角形,若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案