如圖所示,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長(zhǎng)是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案;
(2)首先證明△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)利用已知得出△EFM≌△BPA,進(jìn)而利用在Rt△APE中,(4-BE)2+x2=BE2,利用二次函數(shù)的最值求出即可.
解答:(1)解:如圖1,∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.

(2)△PHD的周長(zhǎng)不變?yōu)槎ㄖ?.
證明:如圖2,過(guò)B作BQ⊥PH,垂足為Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH.
∴CH=QH.
∴△PHD的周長(zhǎng)為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.

(3)如圖3,過(guò)F作FM⊥AB,垂足為M,則FM=BC=AB.
又∵EF為折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
∴△EFM≌△PBA(ASA).
∴EM=AP=x.
∴在Rt△APE中,(4-BE)2+x2=BE2
解得,

又∵折疊的性質(zhì)得出四邊形PEFG與四邊形BEFC全等,

即:
配方得,,
∴當(dāng)x=2時(shí),S有最小值6.
點(diǎn)評(píng):此題主要考查了翻折變換的性質(zhì)以及全等三角形的判定與性質(zhì)和勾股定理、二次函數(shù)的最值問題等知識(shí),熟練利用全等三角形的判定得出對(duì)應(yīng)相等關(guān)系是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州)如圖所示,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長(zhǎng)是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省徐州市九年級(jí)中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖所示,現(xiàn)有一張邊長(zhǎng)為6的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP.

(1)求證:∠APB=∠BPH;
(2)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市九年級(jí)中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,現(xiàn)有一張邊長(zhǎng)為6的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP.

(1)求證:∠APB=∠BPH;

(2)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(山東德州卷)數(shù)學(xué)(解析版) 題型:解答題

如圖所示,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.

(1)求證:∠APB=∠BPH;

(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長(zhǎng)是否發(fā)生變化?并證明你的結(jié)論;

(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江蘇省徐州市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖所示,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長(zhǎng)是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案