【題目】我市重慶路水果市場(chǎng)某水果店購(gòu)進(jìn)甲、乙兩種水果.已知1千克甲種水果的進(jìn)價(jià)比1千克乙種水果的進(jìn)價(jià)多4元,購(gòu)進(jìn)2千克甲種水果與1千克乙種水果共需20元.
(1)求甲種水果的進(jìn)價(jià)為每千克多少元?
(2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),甲種水果每天銷售量y(千克)與售價(jià)m(元/千克)之間滿足如圖所示的函數(shù)關(guān)系,求y與m之間的函數(shù)關(guān)系;

(3)在(2)的條件下,當(dāng)甲種水果的售價(jià)定為多少元時(shí),才能使每天銷售甲種水果的利潤(rùn)最大?最大利潤(rùn)是多少?

【答案】
(1)

解:設(shè)甲種水果的進(jìn)價(jià)為x元/千克,則乙種水果的進(jìn)價(jià)為(x﹣4)元/千克,

根據(jù)題意,得 2x+(x﹣4)=20

解得 x=8,

答:甲種水果進(jìn)價(jià)每千克8元


(2)

解:如圖,設(shè)直線AB的解析式為y=km+b,

將A(10,20),B(15,10)代入y=km+b中 ,解得 ,

∴y=﹣2m+40;


(3)

解:設(shè)每天銷售甲種水果的利潤(rùn)為w元.由題意可得

w=(m﹣8)(﹣2m+40),

=﹣2m2+56m﹣320,

=﹣2(m﹣14)2+72,

∵a=﹣2<0,

∴當(dāng)m=14時(shí),w最大值=72.

答:當(dāng)售價(jià)為每千克14元時(shí),最大利潤(rùn)為72元.


【解析】(1)設(shè)甲種水果的進(jìn)價(jià)為x元/千克,則乙種水果的進(jìn)價(jià)為(x﹣4)元/千克,由題意列方程解答即可;(2)設(shè)直線AB的解析式為y=km+b,將A(10,20),B(15,10)代入解析式,求出k和b的值即可;(3)設(shè)每天銷售甲種水果的利潤(rùn)為w元.由題意可得w=(m﹣8)(﹣2m+40),再由二次函數(shù)的性質(zhì)解答即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1、2是底面半徑為1cm,母線長(zhǎng)為2cm的圓柱體和圓錐體模型.現(xiàn)要用長(zhǎng)為2πcm,寬為4cm的長(zhǎng)方形彩紙(如圖3)裝飾圓柱、圓錐模型表面.已知一個(gè)圓柱和一個(gè)圓錐模型為一套,長(zhǎng)方形彩紙共有122張,用這些紙最多能裝飾多少套模型呢? 老師:“長(zhǎng)方形紙可以怎么裁剪呢?”
學(xué)生甲:“可按圖4方式裁剪出2張長(zhǎng)方形.”
學(xué)生乙:“可按圖5方式裁剪出6個(gè)小圓.”
學(xué)生丙:“可按圖6方式裁剪出1個(gè)大圓和2個(gè)小圓.”
老師:盡管還有其他裁剪方法,但為裁剪方便,我們就僅用這三位同學(xué)的裁剪方法!
(1)計(jì)算:圓柱的側(cè)面積是cm2 , 圓錐的側(cè)面積是cm2
(2)1張長(zhǎng)方形彩紙剪拼后最多能裝飾個(gè)圓錐模型;5張長(zhǎng)方形彩紙剪拼后最多能裝飾個(gè)圓柱體模型.
(3)求用122張彩紙對(duì)多能裝飾的圓錐、圓柱模型套數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE=AF.
(1)試說明∠BAE=∠DAF;
(2)連接AC交EF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標(biāo)系中,點(diǎn)B,F(xiàn)的坐標(biāo)分別為(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點(diǎn)P(點(diǎn)P在GC上)是位似中心,則點(diǎn)P的坐標(biāo)為(
A.(0,3)
B.(0,2.5)
C.(0,2)
D.(0,1.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩人分別從A(1, ),B(6,0)兩點(diǎn)同時(shí)出發(fā),點(diǎn)O為坐標(biāo)原點(diǎn),甲沿AO方向,乙沿BO方向均以4km/h的速度行駛,th后,甲到達(dá)M點(diǎn),乙到達(dá)N點(diǎn).

(1)請(qǐng)說明甲、乙兩人到達(dá)O點(diǎn)前,MN與AB不可能平行;
(2)當(dāng)t為何值時(shí),△OMN∽△OBA;
(3)甲、乙兩人之間的距離為MN的長(zhǎng),設(shè)s=MN2 , 直接寫出s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點(diǎn)D在BC邊上,有下列三個(gè)關(guān)系式:
① BAC=90°,② = ,③AD⊥BC.
選擇其中兩個(gè)式子作為已知,余下的一個(gè)作為結(jié)論,寫出已知,求證,并證明.
已知:
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OBCD的邊OB在x軸上,反比例函數(shù)y= (x>0)的圖象經(jīng)過菱形對(duì)角線的交點(diǎn)A,且與邊BC交于點(diǎn)F,點(diǎn)A的坐標(biāo)為(4,2).則點(diǎn)F的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,且其中一個(gè)等腰三角形的底角是另一個(gè)等腰三角形底角的2倍,我們把這條對(duì)角線叫做這個(gè)四邊形的黃金線,這個(gè)四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對(duì)角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個(gè)內(nèi)角的度數(shù);
(2)如圖2,點(diǎn)B是弧AC的中點(diǎn),請(qǐng)?jiān)凇袿上找出所有的點(diǎn)D,使四邊形ABCD的對(duì)角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.
(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案