精英家教網 > 初中數學 > 題目詳情

已知△ABC中,AB=AC=a,BC=b,點D,E,F分別為AB,BC,AC的中點,則DE+EF等于


  1. A.
    a
  2. B.
    2a
  3. C.
    a+b
  4. D.
    2a+2b
A
分析:由已知可得DE,EF分別是△ABC的中位線,由AB=AC=a,可求得DE,EF的長,從而不難求解.
解答:∵點D,E,F分別為AB,BC,AC的中點,
∴DE,EF分別是△ABC的中位線,
∴DE=AC,EF=AB,
∵AB=AC=a,
∴DE+EF=a,
故選A.
點評:此題主要考查三角形中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知△ABC中,AB=AC,AD平分∠BAC,請補充完整過程證明△ABD≌△ACD的理由.
∵AD平分∠BAC,
∴∠BAD=∠
 
(角平分線的定義).
在△ABD和△ACD中,
(               )
(               )
(               )

∴△ABD≌△ACD
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知△ABC中,AB=AC,AD為BC邊上的中線,BE為AC邊上的高,
(1)在圖中作出中線AD(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法與證明);
(2)設AD,BE交于點F,若∠ABC=70°,求∠DFB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知△ABC中,AB=20,AC=15,BC邊上的高為12,則△ABC的周長為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知△ABC中,AB=AC,AD平分∠BAC,請補充完整過程,說明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠
BAD
BAD
=∠
CAD
CAD
(角平分線的定義)
在△ABD和△ACD中

∴△ABD≌△ACD
SAS
SAS

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:已知△ABC中,AB=17cm,BC=30cm,BC邊上的中線AD=8cm.求證:△ABC是等腰三角形.

查看答案和解析>>

同步練習冊答案