【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)所給條件,請(qǐng)直接寫出不等式kx+b>的解集;

(3)過點(diǎn)BBC⊥x軸,垂足為C,求SABC

【答案】1y=x+1;(2-3x0x2;(3SABC=5

【解析】

1)由一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A2,3),B-3,n)兩點(diǎn),首先求得

反比例函數(shù)的解析式,則可求得B點(diǎn)的坐標(biāo),然后利用待定系數(shù)法即可求得一次函數(shù)的解析式;

2)根據(jù)圖象,觀察即可求得答案;

3)因?yàn)橐?/span>BC為底,則BC邊上的高為3+2=5,所以利用三角形面積的求解方法即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:解一元二次不等式,

解:∵,∴可化為,

由有理數(shù)的乘法法則兩數(shù)相乘,同號(hào)得正,有

1或(2

解不等式組(1),得,解不等式組(2),得,

的解集為

即一元二次不等式的解集為

問題:(1)一元二次不等式的解集為______

2)求分式不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)O,B的對(duì)應(yīng)點(diǎn)分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如圖1,在中,把AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到,把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到,連接當(dāng)時(shí),我們稱的“旋補(bǔ)三角形”, 上的中線AD叫做的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.

特例感知:

在圖2,圖3中,的“旋補(bǔ)三角形”,AD的“旋補(bǔ)中線”.

如圖2,當(dāng)為等邊三角形時(shí),ADBC的數(shù)量關(guān)系為______BC;

如圖3,當(dāng),時(shí),則AD長(zhǎng)為______

猜想論證:

在圖1中,當(dāng)為任意三角形時(shí),猜想ADBC的數(shù)量關(guān)系,并給予證明.

拓展應(yīng)用

如圖4,在四邊形ABCD,,,在四邊形內(nèi)部是否存在點(diǎn)P,使的“旋補(bǔ)三角形”?若存在,給予證明,并求的“旋補(bǔ)中線”長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x與雙曲線y= (k>0,x>0)交于點(diǎn)A,將直線y=x向上平移4個(gè)單位長(zhǎng)度后,y軸交于點(diǎn)C,與雙曲線y= (k>0,x>0)交于點(diǎn)B,OA=3BC,k的值為(   )

A. 3 B. 6 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是反比例函數(shù)y=的圖象的一個(gè)分支,對(duì)于給出的下列說法:

常數(shù)k的取值范圍k>2;②另一分支在第三象限;在函數(shù)圖象上取點(diǎn)A(a1,b1)和點(diǎn)B(a2,b2),當(dāng)a1>a2時(shí),b1<b2;④在函數(shù)圖象的某一分支上取點(diǎn)A(a1,b1)和點(diǎn)B(a2,b2),當(dāng)a1>a2時(shí),b1<b2.其中正確的是__________.(在橫線上填上正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=x與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)A.y=x的圖象向下移6個(gè)單位后與雙曲線y=交于點(diǎn)B,x軸交于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo);

(2)=2,求反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,已知于點(diǎn)D,AE平分

(1)試探究的關(guān)系;

(2)若FAE上一動(dòng)點(diǎn),當(dāng)F移動(dòng)到AE之間的位置時(shí),,如圖2所示,此時(shí)的關(guān)系如何?

(3)若FAE上一動(dòng)點(diǎn),當(dāng)F繼續(xù)移動(dòng)到AE的延長(zhǎng)線上時(shí),如圖3,①中的結(jié)論是否還成立?如果成立請(qǐng)說明理由,如果不成立,寫出新的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案