科目: 來源: 題型:
【解題思路】通過讀題、審題
(1)完成表格有2個(gè)思路:從供或需的角度考慮,均能完成上表。
(2)運(yùn)用公式(調(diào)運(yùn)水的重量×調(diào)運(yùn)的距離)
總調(diào)運(yùn)量=A的總調(diào)運(yùn)量+B的總調(diào)運(yùn)量調(diào)運(yùn)水的重量×調(diào)運(yùn)的距離
y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275(注:一次函數(shù)的最值要得到自變量的取值范圍)∵5>0∴y隨x的增大而增大,y要最小則x應(yīng)最大
由解得1≤x≤14
y=5x+1275中∵5>0∴y隨x的增大而增大,y要最小則x應(yīng)最小=1
∴調(diào)運(yùn)方案為A往甲調(diào)1噸,往乙調(diào)13噸;B往甲調(diào)14噸,不往乙調(diào)。
【答案】⑴(從左至右,從上至下)14-x 15-x x-1
⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275
解不等式1≤x≤14
所以x=1時(shí)y取得最小值
y=5+1275=1280
∴調(diào)運(yùn)方案為A往甲調(diào)1噸,往乙調(diào)13噸;B往甲調(diào)14噸,不往乙調(diào)。
查看答案和解析>>
科目: 來源: 題型:
【解題思路】(1)如下表
甲(s) 乙(t) | 紅桃3 | 紅桃4 | 黑桃5 |
紅桃3 |
|
|
|
紅桃4 |
|
|
|
黑桃5 |
|
|
|
由上表可知:︱s-t︱≥1的概率= = (也可畫樹形圖求解)。
(2)方案A:如表
甲(花色) 乙(花色) | 紅桃3 | 紅桃4 | 黑桃5 |
紅桃3 | 同色 | 同色 | 不同色 |
紅桃4 | 同色 | 同色 | 不同色 |
黑桃5 | 不同色 | 不同色 | 同色 |
由上表可得
方案B:如表
甲 乙 | 紅桃3 | 紅桃4 | 黑桃5 |
紅桃3 | 3+3=6 | 3+4=7 | 3+5=8 |
紅桃4 | 4+3=7 | 4+4=8 | 4+5=9 |
黑桃5 | 5+3=8 | 5+4=9 | 5+5=10 |
由上表可得
因?yàn)?sub>,所以選擇A方案甲的勝率更高.
【答案】⑴⑵A方案,B方案,故選擇A方案甲的勝率更高.
查看答案和解析>>
科目: 來源: 題型:
【解題思路】連結(jié)BD,證△BED≌△CFD和△AED≌△BFD,得BF=4,BE=3,再運(yùn)用勾股定理求得EF=5
【答案】連結(jié)BD,證△BED≌△CFD和△AED≌△BFD,求得EF=5
查看答案和解析>>
科目: 來源: 題型:
為了加強(qiáng)食品安全管理,有關(guān)部門對某大型超市的甲、乙兩種品牌食用油共抽取18瓶進(jìn)行檢測,檢測結(jié)果分成“優(yōu)秀”、“合格”、“不合格”三個(gè)等級,數(shù)據(jù)處理后制成以下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
⑴甲、乙兩種品牌食用油各被抽取了多少瓶用于檢測?
⑵在該超市購買一瓶乙品牌食用油,請估計(jì)能買到“優(yōu)秀”等級的概率是多少?
【解題思路】(1)分別觀察折線和扇形圖不合格的1瓶占甲的10%,所以甲被抽取了10瓶,已被抽取了:18-10=8瓶。
(2)結(jié)合兩圖及問題(1)得乙優(yōu)秀的瓶數(shù)共瓶,所以優(yōu)秀率為
【答案】
⑴(由不合格瓶數(shù)為1知道甲不合格的瓶數(shù)為1)甲、乙分別被抽取了10瓶、8瓶
⑵P(優(yōu)秀)=
查看答案和解析>>
科目: 來源: 題型:
如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為( )
A.4 B.8 C.16 D.
查看答案和解析>>
科目: 來源: 題型:
如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長線于D,且CO=CD,則∠PCA=( )
A.30° B.45° C.60° D.67.5°
查看答案和解析>>
科目: 來源: 題型:
一個(gè)幾何體的三視圖如下:其中主視圖都是腰長為4、底邊為2的等腰三角形,則這個(gè)幾何體的側(cè)面展開圖的面積為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
下列說法中
①一個(gè)角的兩邊分別垂直于另一個(gè)角的兩邊,則這兩個(gè)角相等
②數(shù)據(jù)5,2,7,1,2,4的中位數(shù)是3,眾數(shù)是2
③等腰梯形既是中心對稱圖形,又是軸對稱圖形
④Rt△ABC中,∠C=90°,兩直角邊a,b分別是方程x2-7x+7=0的兩個(gè)根,則AB邊上的中線長為
正確命題有( )
A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com