科目: 來源:2011年初中畢業(yè)升學考試(四川樂山卷)數(shù)學 題型:解答題
如圖,某商標是由邊長均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的鑲嵌圖案.
(1)求這個鑲嵌圖案中一個正三角形的面積;
(2)如果在這個鑲嵌圖案中隨機確定一個點O,那么點O落在鑲嵌圖案中的正方形區(qū)域的概率為多少?(結(jié)果保留二位小數(shù))
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(四川樂山卷)數(shù)學 題型:解答題
如圖,已知⊙O的直徑AB與弦CD互相垂直,垂足為點E. ⊙O的切線BF與
弦AD的延長線相交于點F,且AD=3,cos∠BCD=" " .
(1)求證:CD∥BF;
(2)求⊙O的半徑;
(3)求弦CD的長.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(廣西欽州卷)數(shù)學 題型:解答題
(本題滿分9分)如圖①,小慧同學把一個正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順時針方向旋轉(zhuǎn)120°,此時點O運動到了點O1處,點B運動到了點B1處;小慧又將三角形紙片AO1B1繞點B1按順時針方向旋轉(zhuǎn)120°,此時點A運動到了點A1處,點O1運動到了點O2處(即頂點O經(jīng)過上述兩次旋轉(zhuǎn)到達O2處).
小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過程中,頂點O運動所形成的圖形是兩段
圓弧,即和,頂點O所經(jīng)過的路程是這兩段圓弧的長度之和,并且這兩段圓弧
與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之
和.
小慧進行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA
邊與直線l2重合,然后將正方形紙片繞著頂點^按順時針方向旋轉(zhuǎn)90°,此時點O運動到
了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B1處;小慧又將正方形
紙片AO1C1B1繞頂點B1按順時針方向旋轉(zhuǎn)90°,……,按上述方法經(jīng)過若干次旋轉(zhuǎn)后.她
提出了如下問題:
問題①:若正方形紙片OABC接上述方法經(jīng)過3次旋轉(zhuǎn),求頂點O經(jīng)過的路程,并
求頂點O在此運動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC
按上述方法經(jīng)過5次旋轉(zhuǎn),求頂點O經(jīng)過的路程;
問題②:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點O經(jīng)過的路程是
?
請你解答上述兩個問題.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(廣西欽州卷)數(shù)學 題型:解答題
(本題滿分8分)已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當PA的長度等于
時,∠PAB=60°;
當PA的長度等于 時,△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角
坐標系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐
標為(a,b),試求2 S1 S3-S22的最大值,并求出此時a,b的值.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(廣西欽州卷)數(shù)學 題型:解答題
(本題滿分8分)如圖,已知AB是⊙O的弦,OB=2,∠B=30°,
C是弦AB上的任意一點(不與點A、B重合),連接CO并延長CO交
于⊙O于點D,連接AD.
(1)弦長AB等于 ▲ (結(jié)果保留根號);
(2)當∠D=20°時,求∠BOD的度數(shù);
(3)當AC的長度為多少時,以A、C、D為頂點的三角形與以B、
C、O為頂點的三角形相似?請寫出解答過程.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(江蘇省蘇州市卷)數(shù)學 題型:解答題
(2011•江漢區(qū))如圖,BD是⊙O的直徑,A、C是⊙O上的兩點,且AB=AC,AD與BC的延長線交于點E.
(1)求證:△ABD∽△AEB;
(2)若AD=1,DE=3,求BD的長.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(江蘇省蘇州市卷)數(shù)學 題型:解答題
(2011•德州)●觀察計算
當a=5,b=3時,與的大小關(guān)系是>.
當a=4,b=4時,與的大小關(guān)系是=.
●探究證明
如圖所示,△ABC為圓O的內(nèi)接三角形,AB為直徑,過C作CD⊥AB于D,設AD=a,BD=b.
(1)分別用a,b表示線段OC,CD;
(2)探求OC與CD表達式之間存在的關(guān)系(用含a,b的式子表示).
●歸納結(jié)論
根據(jù)上面的觀察計算、探究證明,你能得出與的大小關(guān)系是:.
●實踐應用
要制作面積為1平方米的長方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長的最小值.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(四川南充卷)數(shù)學解析版 題型:解答題
如圖,已知⊙O的半徑為2,弦BC的長為,點A為弦BC所對優(yōu)弧上任意一點(B,C兩點除外).
(1)求∠BAC的度數(shù);
(2)求△ABC面積的最大值.
(參考數(shù)據(jù): ,,.)
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(四川南充卷)數(shù)學解析版 題型:解答題
有一種用來畫圓的工具板(如圖所示),工具板長21cm,上面依次排列著大小不等的五個圓(孔),其中最大圓的直徑為3cm,其余圓的直徑從左到右依次遞減0.2cm. 最大圓的左側(cè)距工具板左側(cè)邊緣1.5cm,最小圓的右側(cè)距工具板右側(cè)邊緣1.5cm,相鄰兩圓的間距d均相等.
(1)直接寫出其余四個圓的直徑長;
(2)求相鄰兩圓的間距.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(浙江杭州卷)數(shù)學 題型:解答題
(2011•濱州)如圖,直線PM切⊙O于點M,直線PO交⊙O于A、B兩點,弦AC∥PM,連接OM、BC.
求證:(1)△ABC∽△POM;(2)2OA2=OP•BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com