科目: 來源:2013屆湖北宜城九年級上學(xué)期期中考試數(shù)學(xué)試卷(有解析) 題型:解答題
已知:如圖,DABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
(1)求證:AP=PD;
(2)請判斷A,D,F(xiàn)三點是否在以P為圓心,以PD為半徑的圓上?并說明理由;
(3)連接CD,若CD﹦3,BD ﹦4,求⊙O的半徑和DE的長.
查看答案和解析>>
科目: 來源:2013屆湖北宜城九年級上學(xué)期期中考試數(shù)學(xué)試卷(有解析) 題型:解答題
如圖,在⊙O中,∠ACB=∠BDC=60°,AC=,
(1)判斷△ABC的形狀并證明你的結(jié)論;
(2)求⊙O的周長
查看答案和解析>>
科目: 來源:2013屆吉林省鎮(zhèn)賚縣保民中學(xué)九年級上學(xué)期期中數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在等邊△ABC中,AD⊥BC于點D,一個直徑與AD相等的圓與BC相切于點E,與AB相切于點F,連接EF。
(1)判斷EF與AC的位置關(guān)系(不必說明理由);;
(2)如圖(2),過E作BC的垂線,交圓于G,連接AG,判斷四邊形ADEG的形狀,并說明理由。
(3)求證:AC與GE的交點O為此圓的圓心.
查看答案和解析>>
科目: 來源:2013屆吉林省鎮(zhèn)賚縣保民中學(xué)九年級上學(xué)期期中數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,點A、B、D、在⊙O上,弦AE、BD的延長線相交于點C.。若AB是⊙O的直徑,D是BC的中點.
(1)試判斷AB、AC之間的大小關(guān)系,并給出證明;
(2)在上述題設(shè)條件下,△ABC還需滿足什么條件,點E才一定是AC的中點?(直接寫出結(jié)論)
查看答案和解析>>
科目: 來源:2013屆吉林省鎮(zhèn)賚縣保民中學(xué)九年級上學(xué)期期中數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30º,∠APB=60º.
(1)求證:PB是⊙O的切線;
(2)若⊙O的半徑為2,求弦AB及PA,PB的長.
查看答案和解析>>
科目: 來源:2013屆吉林省鎮(zhèn)賚縣保民中學(xué)九年級上學(xué)期期中數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在⊙O中,AB、AC為互相垂直的兩條弦,OD⊥AB于點D ,OE⊥AC于點E,若AB=8cm,AC=6cm求⊙O的半徑.
查看答案和解析>>
科目: 來源:2013屆吉林鎮(zhèn)賚勝利中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
已知OA、OB是⊙O的兩條半徑,且OA⊥BC,C為OB延長線上任意一點,過點C作CD切⊙O于點D,連接AD,交OC過于點E。
(1)求證:CD=CE;
(2)若將圖1中的半徑OB所在的直線向上平行移動,交⊙O于,其他條件不變,如圖2,那么上述結(jié)論CD=CE還成立嗎?為什么?
查看答案和解析>>
科目: 來源:2013屆吉林鎮(zhèn)賚勝利中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖所示,在△BAC中,AB=AC,以AB為直徑的⊙O交AB于點M,MN⊥AC于點N,
(1)求證MN是⊙O的切線;
(2)若∠BAC=120°,AB=2,求圖中陰影部分的面積。
查看答案和解析>>
科目: 來源:2013屆吉林鎮(zhèn)賚勝利中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,已知AB⊙O的直徑,弦CD⊥AB,垂足為E,連AC、BC,若∠BAC=30°,CD=6cm,
(1)求∠BCD度數(shù);
(2)求⊙O的直徑。
查看答案和解析>>
科目: 來源:2013屆吉林鎮(zhèn)賚勝利中學(xué)九年級上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,點AB在直線MN上,AB=11㎝,⊙A⊙B的半徑均為1㎝,⊙A以每秒2㎝的速度自左向右運動,與此同時,⊙B的半徑也不斷增長,其半徑r(cm)與時間t(秒)之間的關(guān)系式為r=1+t(t≥0)(10分)
(1)試寫出點A,B之間距離d(cm)與時間t(s)之間的函數(shù)表達式
(2)問點A出發(fā)后多少秒兩圓相切?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com