相關(guān)習(xí)題
 0  125525  125533  125539  125543  125549  125551  125555  125561  125563  125569  125575  125579  125581  125585  125591  125593  125599  125603  125605  125609  125611  125615  125617  125619  125620  125621  125623  125624  125625  125627  125629  125633  125635  125639  125641  125645  125651  125653  125659  125663  125665  125669  125675  125681  125683  125689  125693  125695  125701  125705  125711  125719  366461 

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標(biāo)和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點O及另一點C,它的頂點B在函數(shù)y=x2-2x-1的圖象的對稱軸上.
(1)求點A與點C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時,求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點.
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標(biāo)及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最。埱蟪鳇cP的坐標(biāo);
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設(shè)CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.
(1)直接寫出點A的坐標(biāo),并求出拋物線的解析式;
(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點P作PE⊥AB交AC于點E.
①過點E作EF⊥AD于點F,交拋物線于點G.當(dāng)t為何值時,線段EG最長?
②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應(yīng)的t值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=3,AB=5.點P從點C出發(fā)沿CA以每秒1個單位長的速度向點A勻速運動,到達點A后立刻以原來的速度沿AC返回;點Q從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動.伴隨著P、Q的運動,DE保持垂直平分PQ,且交PQ于點D,交折線QB-BC-CP于點E.點P、Q同時出發(fā),當(dāng)點Q到達點B時停止運動,點P也隨之停止.設(shè)點P、Q運動的時間是t秒(t>0).
(1)當(dāng)t=2時,AP=______,點Q到AC的距離是______;
(2)在點P從C向A運動的過程中,求△APQ的面積S與t的函數(shù)關(guān)系式;(不必寫出t的取值范圍)
(3)在點E從B向C運動的過程中,四邊形QBED能否成為直角梯形?若能,求t的值;若不能,請說明理由;
(4)當(dāng)DE經(jīng)過點C時,請直接寫出t的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖,已知拋物線經(jīng)過坐標(biāo)原點O和x軸上另一點E,頂點M的坐標(biāo)為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)將矩形ABCD以每秒1個單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當(dāng)t=時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

已知:拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C.其中點A在x軸的負(fù)半軸上,點C在y軸的負(fù)半軸上,線段OA、OC的長(OA<OC)是方程x2-5x+4=0的兩個根,且拋物線的對稱軸是直線x=1.
(1)求A、B、C三點的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點D是線段AB上的一個動點(與點A、B不重合),過點D作DE∥BC交AC于點E,連接CD,設(shè)BD的長為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(21):2.7 最大面積是多少(解析版) 題型:解答題

已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點A(-2,0)、點B(6,0),與y軸交于點C.
(1)求出此拋物線的解析式,并寫出頂點坐標(biāo);
(2)在拋物線上有一點D,使四邊形ABDC為等腰梯形,寫出點D的坐標(biāo),并求出直線AD的解析式;
(3)在(2)中的直線AD交拋物線的對稱軸于點M,拋物線上有一動點P,x軸上有一動點Q.是否存在以A、M、P、Q為頂點的平行四邊形?如果存在,請直接寫出點Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.7 最大面積是多少(解析版) 題型:解答題

如圖所示,將矩形OABC沿AE折疊,使點O恰好落在BC上F處,以CF為邊作正方形CFGH,延長BC至M,使CM=|CE-EO|,再以CM、CO為邊作矩形CMNO.
(1)試比較EO、EC的大小,并說明理由;
(2)令m=,請問m是否為定值?若是,請求出m的值;若不是,請說明理由;
(3)在(2)的條件下,若CO=1,CE=,Q為AE上一點且QF=,拋物線y=mx2+bx+c經(jīng)過C、Q兩點,請求出此拋物線的解析式;
(4)在(3)的條件下,若拋物線y=mx2+bx+c與線段AB交于點P,試問在直線BC上是否存在點K,使得以P、B、K為頂點的三角形與△AEF相似?若存在,請求直線KP與y軸的交點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案