相關(guān)習題
 0  145634  145642  145648  145652  145658  145660  145664  145670  145672  145678  145684  145688  145690  145694  145700  145702  145708  145712  145714  145718  145720  145724  145726  145728  145729  145730  145732  145733  145734  145736  145738  145742  145744  145748  145750  145754  145760  145762  145768  145772  145774  145778  145784  145790  145792  145798  145802  145804  145810  145814  145820  145828  366461 

科目: 來源:第2章《二次函數(shù)》常考題集(20):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線的頂點為A(2,1),且經(jīng)過原點O,與x軸的另一個交點為B.
(1)求拋物線的解析式;
(2)在拋物線上求點M,使△MOB的面積是△AOB面積的3倍;
(3)連接OA,AB,在x軸下方的拋物線上是否存在點N,使△OBN與△OAB相似?若存在,求出N點的坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點,與y軸交于C點,且經(jīng)過點(2,-3a),對稱軸是直線x=1,頂點是M.
(1)求拋物線對應(yīng)的函數(shù)表達式;
(2)經(jīng)過C,M兩點作直線與x軸交于點N,在拋物線上是否存在這樣的點P,使以點P,A,C,N為頂點的四邊形為平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)設(shè)直線y=-x+3與y軸的交點是D,在線段BD上任取一點E(不與B,D重合),經(jīng)過A,B,E三點的圓交直線BC于點F,試判斷△AEF的形狀,并說明理由;
(4)當E是直線y=-x+3上任意一點時,(3)中的結(jié)論是否成立(請直接寫出結(jié)論).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)已知點D(m,m+1)在第一象限的拋物線上,求點D關(guān)于直線BC對稱的點的坐標;
(3)在(2)的條件下,連接BD,點P為拋物線上一點,且∠DBP=45°,求點P的坐標.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標系中,點A(,0),B(3,2),C(0,2).動點D以每秒1個單位的速度從點O出發(fā)沿OC向終點C運動,同時動點E以每秒2個單位的速度從點A出發(fā)沿AB向終點B運動.過點E作EF上AB,交BC于點F,連接DA、DF.設(shè)運動時間為t秒.
(1)求∠ABC的度數(shù);
(2)當t為何值時,AB∥DF;
(3)設(shè)四邊形AEFD的面積為S.①求S關(guān)于t的函數(shù)關(guān)系式;
②若一拋物線y=-x2+mx經(jīng)過動點E,當S<2時,求m的取值范圍(寫出答案即可).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,半徑為1的圓的圓心O在坐標原點,且與兩坐標軸分別交于A、B、C、D四點.拋物線y=ax2+bx+c與y軸交于點D,與直線y=x交于點M、N,且MA、NC分別與圓O相切于點A和點C.
(1)求拋物線的解析式;
(2)拋物線的對稱軸交x軸于點E,連接DE,并延長DE交圓O于F,求EF的長;
(3)過點B作圓O的切線交DC的延長線于點P,判斷點P是否在拋物線上,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如左圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標為(3,0),OB=OC,tan∠ACO=
(1)求這個二次函數(shù)的表達式.
(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標和△APG的最大面積.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知直線y=-x+1交坐標軸于A,B兩點,以線段AB為邊向上作正方形ABCD,過點A,D,C的拋物線與直線另一個交點為E.
(1)請直接寫出點C,D的坐標;
(2)求拋物線的解析式;
(3)若正方形以每秒個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(4)在(3)的條件下,拋物線與正方形一起平移,同時D停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在直角坐標系中,點A的坐標為(-2,0),連接OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.
(1)求點B的坐標;
(2)求經(jīng)過A、O、B三點的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最。咳舸嬖,求出點C的坐標;若不存在,請說明理由;
(4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.
(注意:本題中的結(jié)果均保留根號).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(21):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點,當M點在BC上運動時,保持AM和MN垂直.
(1)證明:Rt△ABM∽Rt△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當M點運動到什么位置時,四邊形ABCN的面積最大,并求出最大面積;
(3)當M點運動到什么位置時Rt△ABM∽Rt△AMN,求此時x的值.

查看答案和解析>>

同步練習冊答案