科目: 來源: 題型:
如圖,□ABCD中,E,F是對角線BD上的兩點,如果添加一個條件,使△ABE≌△CDF,則添加的條件不能為【 】
A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2
查看答案和解析>>
科目: 來源: 題型:
在端午節(jié)道來之前,學校食堂推薦了A,B,C三家粽子專賣店,對全校師生愛吃哪家店的粽子作調(diào)查,以決定最終向哪家店采購. 下面的統(tǒng)計量中,最值得關注的是【 】
A. 方差 B. 平均數(shù) C. 中位數(shù) D. 眾數(shù)
查看答案和解析>>
科目: 來源: 題型:
2015年中國高端裝備制造業(yè)收入將超過6萬億元,其中6萬億元用科學計數(shù)法可表示為【 】
A. 0.6×1013元 B. 60×1011元 C. 6×1012元 D. 6×1013元
查看答案和解析>>
科目: 來源: 題型:
已知:如圖①,在□ABCD中,AB=3cm,BC=5cm.AC⊥AB。△ACD沿AC的方向勻速平移得到
△PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿CB方向勻速運動,速度為1cm/s,當△PNM停止平移時,點Q也停止運動.如圖②,設運動時間為t(s)(0<t<4).解答下列問題:
(1)當t為何值時,PQ∥MN?
(2)設△QMC的面積為y(cm2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使S△QMC∶S四邊形ABQP=1∶4?若存在,求出t的值;
若不存在,請說明理由.
(4)是否存在某一時刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設能搭成種不同的等腰三角形,為探究之間的關系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結(jié)論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
此時,顯然能搭成一種等腰三角形。所以,當時,
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當時,
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當時,
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當時,
綜上所述,可得表①
| 3 | 4 | 5 | 6 |
| 1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表②中)
(2) 分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(只需把結(jié)果填在表②中)
| 7 | 8 | 9 | 10 |
|
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,……
解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設分別等于、、、,其中是整數(shù),把結(jié)果填在表③中)
|
|
|
|
|
|
問題應用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(要求寫出解答過程)
其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com