科目: 來源: 題型:
【題目】如圖,直線AB和直線BC相交于點B,連接AC,點D. E. H分別在AB、AC、BC上,連接DE、DH,F是DH上一點,已知∠1+∠3=180°,
(1)求證:∠CEF=∠EAD;
(2)若DH平分∠BDE,∠2=α,求∠3的度數(shù).(用α表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次數(shù)學課上,王老師在黑板上畫出一幅圖,并寫下了四個等式:
①,②,③,④.
(1)上述四個條件中,由哪兩個條件可以判定是等腰三角形?用序號寫出所有成立的情形.
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線、相交于點,平分,.
(1)若∠AOF=50°,求∠BOE的度數(shù);
(2)若∠BOD:∠BOE=1:4,求∠AOF的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點A(2,4)、B(4,1)、C(2,0).將三角形ABC向右平移2個單位長度后,再向下平移3個單位長度,得到三角形ABC,其中點A、B、C分別是點A. B. C的對應點。
(1)請在圖中畫出三角形ABC,并寫出點A、B、C的坐標;
(2)連接AA、BB,求四邊形AABB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,點.
(1)只用直尺(沒有刻度)和圓規(guī),求作一個點P,使點P同時滿足下列兩個條件
①點P到A,B兩點的距離相等;
②點P到的兩邊的距離相等.
(要求保留作圖痕跡,不必寫出作法)
(2)在(1)作出點P后,點P的坐標為_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法中正確的是 ( )
A. 在 Rt△ABC中,若tanA=,則a=4,b=3
B. 在 Rt△ABC中,∠C=90°,則tanA+tanB=1
C. 在 Rt△ABC 中,∠C=90°,若a=3,b=4,則tanA=
D. tan75°=tan(45°+30°)=tan45°+tan30°=1+
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點,(點A在點B的左側),與直線AC交于點C(2,3),直線AC與拋物線的對稱軸l相交于點D,連接BD.
(1)求拋物線的函數(shù)表達式,并求出點D的坐標;
(2)如圖2,若點M、N同時從點D出發(fā),均以每秒1個單位長度的速度分別沿DA、DB運動,連接MN,將△DMN沿MN翻折,得到△D′MN,判斷四邊形DMD′N的形狀,并說明理由,當運動時間t為何值時,點D′恰好落在x軸上?
(3)在平面內,是否存在點P(異于A點),使得以P、B、D為頂點的三角形與△ABD相似(全等除外)?若存在,請直接寫出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】請把下列的證明過程補充完整:
已知,如圖,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4,求證:AD∥BE.
證明:∵AB∥CD(已知)
∴∠4=∠______
∵∠3=∠4(已知)
∴∠3=∠______(等量代換)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性質)
即∠BAF=∠______
∴∠3=∠______(等量代換)
∴AD∥BE______.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀與思考;
婆羅摩笈多是一位印度數(shù)學家與天文學家,書寫了兩部關于數(shù)學與天文的書籍,他的一些數(shù)學成就在世界數(shù)學史上有較高的地位,他的負數(shù)及加減法運算僅晚于中國九章算術而他的負數(shù)乘除法法則在全世界都是領先的,他還提出了著名的婆羅摩笈多定理,該定理的內容及證明如下:
已知:如圖,四邊形ABCD內接與圓O對角線AC⊥BD于點M,ME⊥BC于點E,延長EM交CD于F,求證:MF=DF
證明∵AC⊥BD,ME⊥BC
∴∠CBD=∠CME
∵∠CBD=∠CAD,∠CME=∠AMF
∴∠CAD=∠AMF
∴AF=MF
∵∠AMD=90°,同時∠MAD+∠MDA=90°
∴∠FMD=∠FDM
∴MF=DF,即F是AD中點.
(1)請你閱讀婆羅摩笈多定理的證明過程,完成婆羅摩笈多逆定理的證明:
已知:如圖1,四邊形ABCD內接與圓O,對角線AC⊥BD于點M,F是AD中點,連接FM并延長交BC于點E,求證:ME⊥BC
(2)已知如圖2,△ABC內接于圓O,∠B=30°∠ACB=45°,AB=2,點D在圓O上,∠BCD=60°,連接AD 交BC于點P,作ON⊥CD于點N,延長NP交AB于點M,求證PM⊥BA并求PN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com