科目: 來源: 題型:
【題目】如圖,在ABCD中,點E為CD的中點,點F在BC上,且CF=2BF,連接AE,AF,若AF=,AE=7,tan∠EAF=,則線段BF的長為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖正方形ABCD的邊長為2,點E,F,G,H分別在AD,AB,BC,CD上,且EA=FB=GC=HD,分別將△AEF,△BFG,△CGH,△DHE沿EF,FG,GH,HE翻折,得四邊形MNKP,設(shè)AE=x(0<x<1),S四邊形MNKP=y,則y關(guān)于x的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結(jié)BC.若△ABC的面積為2.
(1)求k的值;
(2)x軸上是否存在一點D,使△ABD為直角三角形?若存在,求出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖是一個組合幾何體,右邊是它的兩種視圖,在右邊橫線上填寫出兩種視圖的名稱;
視圖 視圖
(2)根據(jù)兩種視圖中尺寸(單位:cm),計算這個組合幾何體的表面積.(π取3.14)
查看答案和解析>>
科目: 來源: 題型:
【題目】教師辦公室有一種可以自動加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10 ℃,待加熱到100 ℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例函數(shù)關(guān)系,直至水溫降至室溫,飲水機再次自動加熱,重復(fù)上述過程.設(shè)某天水溫和室溫均為20 ℃,接通電源后,水溫y(℃)和通電時間x(min)之間的關(guān)系如圖所示,回答下列問題:
(1)分別求出當(dāng)0≤x≤8和8<x≤a時,y和x之間的函數(shù)關(guān)系式;
(2)求出圖中a的值;
(3)李老師這天早上7:30將飲水機電源打開,若他想在8:10上課前喝到不低于40 ℃的開水,則他需要在什么時間段內(nèi)接水?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB,對角線相交于O,過C點作CE⊥BD交BD于E點,H為BC中點,連接AH交BD于G點,交EC的延長線于F點,下列5個結(jié)論:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四邊形GHCE;⑤CF=BD.正確的有( )個.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為【 】
A.1 B. C. 2 D.+1
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)習(xí)過絕對值之后,我們知道:|5-2|表示 5 與 2 的差的絕對值,實際上也可理解為 5 與 2 兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離:|5+2|表示 5 與-2 的差的絕對值,實際上也可理解為 5 與-2 兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離. 試探究解決以下問題:
⑴|x+6|可以理解為 與 兩數(shù)在數(shù)軸上所對應(yīng)的兩點之間的距離;
⑵找出所有符合條件的整數(shù) x,使|x+1|+|x-2|=3 成立;
⑶如圖,在一條筆直的高速公路旁邊依次有 A、B、C 三個城市,它們距高速公路起點的距離分別是 567km、689km、889km.現(xiàn)在需要在該公路旁建一個物流集散中心 P,請直接指出該物流集散中心 P 應(yīng)該建設(shè)在何處,才能使得 P 到三個城市的距離之和最小?這個最小距離是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,兩個含有30°角的完全相同的三角板ABC和DEF沿直線l滑動,下列說法錯誤的是( )
A. 四邊形ACDF是平行四邊形 B. 當(dāng)點E為BC中點時,四邊形ACDF是矩形
C. 當(dāng)點B與點E重合時,四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,A,C分別在坐標(biāo)軸上,點B的坐標(biāo)為(4,2),直線y=–x+3交AB,BC于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com