科目: 來源: 題型:
【題目】如圖,△ABC在正方形網(wǎng)格中,若A(0,3),按要求回答下列問題
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫出B和C的坐標(biāo);
(3)計算△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D在△ABC內(nèi),BD=BC,∠DBC=60°,點E在△ABC外,∠BCE=150°,∠ABE=60°.
(1)求證:△ADB≌△ADC , 并求出∠ADB的度數(shù);
(2)小明說△ABE是等腰三角形,小華說△ABE是等邊三角形.請問 說法更準(zhǔn)確,并說明理由.
(3)連接DE,若DE⊥BD,DE=8,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某一工程,在工程招標(biāo)時,接到甲、乙兩個工程隊的投標(biāo)書.施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊的投標(biāo)書測算,有如下方案:
(1)甲隊單獨完成這項工程剛好如期完成;
(2)乙隊單獨完成這項工程要比規(guī)定日期多用6天;
(3)若甲、乙兩隊合作3天,余下的工程由乙隊單獨做也正好如期完成.
試問:(1)規(guī)定日期是多少天?
(2)在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶,或可以求出一些不規(guī)則圖形的面積.
(1)選擇題:圖1是一個長2a、寬2b(a>b)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形.然后,按圖2那樣拼成一個(中間空的)正方形,則中間空的部分面積是( )
A.2ab B.(a+b)2 C.(a﹣b)2 D.a2﹣b2
(2)如圖3,是將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的方法計算這個圖形的面積.據(jù)此,你能發(fā)現(xiàn)什么結(jié)論,請直接寫出來:
(3)如圖4,是將兩個邊長分別為a和b的正方形拼在一起,B、C、G三點在同一直線上,連接BD和BF.若兩個正方形的邊長滿足a+b=10,ab=20,求陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,△ABC中,AD是∠BAC的角平分線,若AB=AC+CD.那么∠ACB 與∠ABC有怎樣的數(shù)量關(guān)系? 小明通過觀察分析,形成了如下解題思路:
如圖2,延長AC到E,使CE=CD,連接DE,由AB=AC+CD,可得AE=AB,又因為AD是∠BAC的平分線,可得△ABD≌△AED,進(jìn)一步分析就可以得到∠ACB 與∠ABC的數(shù)量關(guān)系.
(1) 判定△ABD 與△AED 全等的依據(jù)是______________(SSS,SAS,ASA,AAS 從其中選擇一個);
(2)∠ACB 與∠ABC的數(shù)量關(guān)系為:___________________
查看答案和解析>>
科目: 來源: 題型:
【題目】圖中是拋物線形拱橋,當(dāng)拱頂離水面2m時,水面寬4m,建立如圖所示的平面直角坐標(biāo)系:
(1)求拱橋所在拋物線的解析式;
(2)當(dāng)水面下降1m時,則水面的寬度為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2交x軸于點A,交y軸于點B,過點A的拋物線y=ax2+bx﹣2與y軸交點C,與直線AB的另一個交點為D,點E是線段AD上一點,點F在拋物線上,EF∥y軸,設(shè)E的橫坐標(biāo)為m
(1)用含a的代數(shù)式表示b.
(2)當(dāng)點D的橫坐標(biāo)為8時,求出a的值.
(3)在(2)的條件下,設(shè)△ABF的面積為S,求出S最大值,并求出此時m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖平面直角坐標(biāo)系中,A點坐標(biāo)為(0,1),AB=BC=,∠ABC=90°,CD⊥x軸.
(1)填空:B點坐標(biāo)為 ,C點坐標(biāo)為 .
(2)若點P是直線CD上第一象限上一點且△PAB的面積為6.5,求P點的坐標(biāo);
(3)在(2)的條件下點M是x軸上線段OD之間的一動點,當(dāng)△PAM為等腰三角形時,直接寫出點M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),頂點D和點B關(guān)于過點A的直線l:y=﹣x﹣對稱.
(1)求A、B兩點的坐標(biāo)及二次函數(shù)解析式;
(2)如圖2,作直線AD,過點B作AD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:
(3)將二次函數(shù)圖象向右平移個單位,再向上平移3個單位,平移后的二次函數(shù)圖象上存在一點M,其橫坐標(biāo)為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com