科目: 來源: 題型:
【題目】如圖,點(diǎn)是的角平分線上一點(diǎn),于點(diǎn),點(diǎn)是線段上一點(diǎn).已知,,點(diǎn)為上一點(diǎn).若滿足,則的長度為( )
A.3B.5C.5和7D.3或7
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,過點(diǎn)A(1,3)的一次函數(shù)y=kx+6(k≠0)的圖象分別與x軸,y軸相交于B,C兩點(diǎn).
(1)求k的值;
(2)直線l與y軸相交于點(diǎn)D(0,2),與線段BC相交于點(diǎn)E.
(i)若直線l把△BOC分成面積比為1:2的兩部分,求直線l的函數(shù)表達(dá)式;
(ⅱ)連接AD,若△ADE是以AE為腰的等腰三角形,求滿足條件的點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,﹣)在直線y=﹣上,AB∥y軸,且點(diǎn)B的縱坐標(biāo)為1,雙曲線y=經(jīng)過點(diǎn)B.
(1)求a的值及雙曲線y=的解析式;
(2)經(jīng)過點(diǎn)B的直線與雙曲線y=的另一個交點(diǎn)為點(diǎn)C,且△ABC的面積為.
①求直線BC的解析式;
②過點(diǎn)B作BD∥x軸交直線y=﹣于點(diǎn)D,點(diǎn)P是直線BC上的一個動點(diǎn).若將△BDP以它的一邊為對稱軸進(jìn)行翻折,翻折前后的兩個三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,且∠ACB=90°,點(diǎn)D是AB邊上的一點(diǎn)(點(diǎn)D不與A,B重合),連接CD,過點(diǎn)C作CE⊥CD,且CE=CD,連接DE,AE.
(1)求證:△CBD≌△CAE;
(2)若AD=4,BD=8,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知△OAB的兩個頂點(diǎn)的坐標(biāo)分別是A(3,0),B(2,3).
(1)畫出△OAB關(guān)于y軸對稱的△OA1B1,其中點(diǎn)A,B的對應(yīng)點(diǎn)分別為A1,B1,并直接寫出點(diǎn)A1,B1的坐標(biāo);
(2)點(diǎn)C為y軸上一動點(diǎn),連接A1C,B1C,求A1C+B1C的最小值并求出此時點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】對于鈍角β,定義它的三角函數(shù)值如下:
sinβ=sin(180°﹣β),cosβ=﹣cos(180°﹣β),tanβ=﹣tan(180°﹣β).
(1)求sin120°,cos135°,tan150°的值;
(2)若一個三角形的三個內(nèi)角的比是1:1:4,A,B是這個三角形的兩個頂點(diǎn),sinA,cosB是方程ax2﹣bx﹣1=0的兩個不相等的實(shí)數(shù)根,求a、b的值及∠A和∠B的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就“學(xué)生體育活動興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有 人喜歡籃球項(xiàng)目.
(2)請將條形統(tǒng)計圖補(bǔ)充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加;@球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(﹣3,﹣3).
(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點(diǎn)B(﹣6,m),與x軸交于點(diǎn)C,求m的值和直線BC的表達(dá)式;
(3)在(2)的條件下,直線BC與y軸交于點(diǎn)D,求以點(diǎn)A,B,D為頂點(diǎn)的三角形的面積;
(4)在(3)的條件下,點(diǎn)A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司銷售部有營銷員15人,銷售部為了制定關(guān)于某種商品的每位營銷員的個人月銷售定額,統(tǒng)計了這15人某月關(guān)于此商品的個人月銷售量(單位:件)如下:
個人月銷售量 | 1800 | 510 | 250 | 210 | 150 | 120 |
營銷員人數(shù) | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求這15位營銷員該月關(guān)于此商品的個人月銷售量的平均數(shù),并直接寫出這組數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)假設(shè)該銷售部負(fù)責(zé)人把每位營銷員關(guān)于此商品的個人月銷售定額確定為320件,你認(rèn)為對多數(shù)營銷員是否合理?并在(1)的基礎(chǔ)上說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題探究
(1)如圖①,已知正方形ABCD的邊長為4.點(diǎn)M和N分別是邊BC、CD上兩點(diǎn),且BM=CN,連接AM和BN,交于點(diǎn)P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.
(2)如圖②,已知正方形ABCD的邊長為4.點(diǎn)M和N分別從點(diǎn)B、C同時出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)C和D運(yùn)動.連接AM和BN,交于點(diǎn)P,求△APB周長的最大值;
問題解決
(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點(diǎn)M和N分別從點(diǎn)B、C同時出發(fā),以相同的速度沿BC、CA向終點(diǎn)C和A運(yùn)動.連接AM和BN,交于點(diǎn)P.求△APB周長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com