科目: 來源: 題型:
【題目】如圖,C是以點(diǎn)O為圓心,AB為直徑的半圓上一點(diǎn),且CO⊥AB,在OC兩側(cè)分別作矩形OGHI和正方形ODEF,且點(diǎn)I,F(xiàn)在OC上,點(diǎn)H,E在半圓上,可證:IG=FD.小云發(fā)現(xiàn)連接圖中已知點(diǎn)得到兩條線段,便可證明IG=FD.
請(qǐng)回答:小云所作的兩條線段分別是_____和_____;
證明IG=FD的依據(jù)是矩形的對(duì)角線相等,_____和等量代換.
查看答案和解析>>
科目: 來源: 題型:
【題目】在等腰三角形ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,已知a=3,b和c是關(guān)于x的方程x2+mx+2-m=0的兩個(gè)實(shí)數(shù)根.
(1)求△ABC的周長(zhǎng).
(2)求△ABC的三邊均為整數(shù)時(shí)的外接圓半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是弧BD的中點(diǎn),CE⊥AB于點(diǎn)F.
(1)求證:BF=CF;
(2)若CD=3cm,AC=4cm,求⊙O的半徑及CE的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn).
(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DE⊥DF,求證:BE=AF;
(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DE⊥DF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD=2,求AD的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】列方程(組)解應(yīng)用題:
為順利通過國(guó)家義務(wù)教育均衡發(fā)展驗(yàn)收,我市某中學(xué)配備了兩個(gè)多媒體教室,購買了筆記本電腦和臺(tái)式電腦共120臺(tái),購買筆記本電腦用了7.2萬元,購買臺(tái)式電腦用了24萬元,已知筆記本電腦單價(jià)是臺(tái)式電腦單價(jià)的1.5倍,那么筆記本電腦和臺(tái)式電腦的單價(jià)各是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB邊上任意一點(diǎn),∠ECF=45°,CF交AD于點(diǎn)F,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△CDP,點(diǎn)P恰好在AD的延長(zhǎng)線上.
(1)求證:EF=PF;
(2)直線EF與以C為圓心,CD為半徑的圓相切嗎?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且∠A=2∠CBF.
(1)求證:BF與⊙O相切.
(2)若BC=CF=4,求BF的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com