相關習題
 0  359865  359873  359879  359883  359889  359891  359895  359901  359903  359909  359915  359919  359921  359925  359931  359933  359939  359943  359945  359949  359951  359955  359957  359959  359960  359961  359963  359964  359965  359967  359969  359973  359975  359979  359981  359985  359991  359993  359999  360003  360005  360009  360015  360021  360023  360029  360033  360035  360041  360045  360051  360059  366461 

科目: 來源: 題型:

【題目】以△ABC的三邊為邊在BC的同一側作等邊△ABP,等邊△ACQ,等邊△BCR

1)四邊形QRPA是平行四邊形嗎?若是,請證明;若不是,請說明理由.

2)當△ABC滿足什么條件時,四邊形QRPA是矩形?請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知:如圖,ABCD中,∠BAD與∠ADC的角平分線交于BC邊的點F,∠ABC與∠BCD的角平分線交于AD邊的點H

1)求證:四邊形EFGH為矩形.

2)若HF3,求BC的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,把兩塊全等的含45°角的直角三角板ABCDEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合.把三角板ABC固定不動,讓三角板DEF繞點D旋轉,兩邊分別與線段AB,BC相交于點P,Q,易說明APD∽△CDQ.根據以上內容,回答下列問題:

(1)如圖2,將含30°角的三角板DEF(其中EDF=30°)的銳角頂點D與等腰ABC(其中ABC=120°)的底邊中點O重合,兩邊DF,DE分別與邊AB,BC相交于點PQ.寫出圖中的相似三角形__ _ (直接填在橫線上);

(2)其他條件不變,將三角板DEF旋轉至兩邊DF,DE分別與邊AB的延長線、邊BC相交于點P,Q.上述結論還成立嗎?請你在圖3上補全圖形,并說明理由;

(3)(2)的條件下,連接PQ,△APDDPQ是否相似?請說明理由;

(4)根據(1)(2)的解答過程,你能否將兩三角板改為更一般的三角形,使得(1)中的結論仍然成立?若能,請說明兩個三角形應滿足的條件;若不能,請簡要說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,BDCE分別是ABC的兩邊上的高,過DDGBCG,分別交CEBA的延長線于F,H,求證:

(1)DG2BG·CG;

(2)BG·CGGF·GH.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的長和四邊形ABCD的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在海洋上有一近似于四邊形的島嶼,其平面如圖甲,小明據此構造處該島的一個數學模型(如圖乙四邊形ABCD),AC是四邊形島嶼上的一條小溪流,其中∠B90°,ABBC5千米,CD干米,AD4干米.

1)求小溪流AC的長.

2)求四邊形ABCD的面積.(結果保留根號)

查看答案和解析>>

科目: 來源: 題型:

【題目】 已知,反比例函數y=的圖象和一次函數的圖象交于A、B兩點,點A的橫坐標是-1,點B的縱坐標是-1

1)求這個一次函數的表達式;

2)若點Pm,n)在反比例函數圖象上,且點P關于x軸對稱的點Q恰好落在一次函數的圖象上,求m2+n2的值;

3)若Mx1y1),Nx2y2)是反比例函數在第一象限圖象上的兩點,滿足x2-x1=2,y1+y2=3,求△MON的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】 在正方形ABCD中.

1)如圖1,點E、F分別在BCCD上,AEBF相交于點O,∠AOB=90°,試判斷AEBF的數量關系,并說明理由;

2)如圖2,點EF、G、H分別在邊BC、CD、DA、AB上,EG、FH相交于點O,∠GOH=90°,且EG=7,求FH的長;

3)如圖3,點E、F分別在BCCD上,AE、BF相交于點O,∠AOB=90°,若AB=5,圖中陰影部分的面積與正方形的面積之比為45,求△ABO的周長.

查看答案和解析>>

科目: 來源: 題型:

【題目】 先閱讀下面的材料,再解答下面的問題:如果兩個三角形的形狀相同,則稱這兩個三角形相似.如圖1,△ABC與△DEF形狀相同,則稱△ABC與△DEF相似,記作△ABC∽△DEF.那么,如何說明兩個三角形相似呢?我們可以用“兩角分別相等的三角形相似”加以說明.用數學語言表示為:

如圖1:在△ABC與△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF

請你利用上述定理解決下面的問題:

1)下列說法:①有一個角為50°的兩個等腰三角形相似;②有一個角為100°的兩個等腰三角形相似;③有一個銳角相等的兩個直角三角形相似;④兩個等邊三角形相似.其中正確的是______(填序號);

2)如圖2,已知ABCD,ADBC相交于點O,試說明△ABO∽△DCO;

3)如圖3,在平行四邊形ABCD中,EDC上一點,連接AEFAE上一點,且∠BFE=∠C,求證:△ABF∽△EAD

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方形ABCD中,點E在邊BC(E不與點B重合),連接AE,過點BBFAE于點F,交CD于點G.

(1)求證:ABF∽△BGC

(2)AB=2,GCD的中點,求AF的長.

查看答案和解析>>

同步練習冊答案