科目: 來源: 題型:
【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個(gè)數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了預(yù)防“流感”,某學(xué)校對(duì)教室采用藥熏法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點(diǎn)燃后的時(shí)間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點(diǎn)燃后4分鐘燃盡,此時(shí)室內(nèi)每立方米空氣中含藥量為8毫克.
(1)求藥物燃燒時(shí),y與x之間函數(shù)的表達(dá)式;
(2)求藥物燃盡后,y與x之間函數(shù)的表達(dá)式;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于2毫克時(shí),才能有效殺滅空氣中的病菌,那么此次消毒有效時(shí)間有多長?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點(diǎn),過 A 作 y 軸的垂線,交函數(shù)的圖象于點(diǎn) C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)y1=x(x≥0),y2=(x>0)的圖象如圖所示,則結(jié)論:①兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3,3);②當(dāng)x<3時(shí),y2>y1;③當(dāng)x=1時(shí),BC=8;④當(dāng)x逐漸增大時(shí),y1隨著x的增大而增大,y2隨著x的增大而減。渲姓_結(jié)論的序號(hào)是( )
A. ①③④ B. ①②③④ C. ②③④ D. ①③
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=10cm,長為4cm的線段DE在邊AC上,且點(diǎn)D與點(diǎn)A重合,點(diǎn)F是DE的中點(diǎn),線段DE從點(diǎn)A出發(fā),沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),直到點(diǎn)E與點(diǎn)C重合,速度1cm/s。過點(diǎn)F作PF⊥AC,交AB于點(diǎn)P,過點(diǎn)P作PQ//AC,交BC于點(diǎn)Q,連接PD,PE,QE,設(shè)線段DE的運(yùn)動(dòng)時(shí)間為t(s).(0≤t≤6)
(1)請(qǐng)分別用含有t的代數(shù)式表示線段PF、BQ
(2)當(dāng)t為何值時(shí),四邊形PFCQ為正方形?
(3)設(shè)四邊形PDEQ的面積為y(cm)請(qǐng)求出y與t之間的函數(shù)關(guān)系式,并求出當(dāng)t為何值時(shí),四邊形PDEQ的面積最大,最大是多少?
(4)是否存在某一時(shí)刻t,使得EP平分∠AEQ?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】計(jì)數(shù)問題是我們經(jīng)常遇到的一類問題,學(xué)會(huì)解決計(jì)數(shù)問題的方法,可以使我們方便快捷,準(zhǔn)確無誤的得到所要求的結(jié)果,下面讓我們借助兩個(gè)問題,了解計(jì)數(shù)問題中的兩個(gè)基本原理---加法原理、乘法原理.
問題1.從青島到大連可以乘坐飛機(jī)、火車、汽車、輪船直接到達(dá).如果某一天中從青島直接到達(dá)大連的飛機(jī)有3班,火車有4班,汽車有8班,輪船有5班,那么這一天中乘坐某種交通工具從青島直接到達(dá)大連共有 種不同的走法:
問題2.從甲地到乙地有3條路,從乙地到丙地有4條路,那么從甲地經(jīng)過乙地到丙地,共有 種不同的走法:
方法探究
加法原理:一般的,完成一件事有兩類不同的方案,在第一類方案中有m種不同的方法,在第二類方案中有n種不同的方法。那么完成這件事共有N=m+n種不同的方法,這是分類加法計(jì)數(shù)原理;完成一件事需要兩個(gè)步驟,做第一步有m種不同的方法,做第二步有n種不同的方法.那么完成這件事共有N=m×n種不同的方法,這就是分步乘法計(jì)數(shù)原理.
實(shí)踐應(yīng)用1
問題3.如圖1,圖中線段代表橫向、縱向的街道,小明爸爸打算從A點(diǎn)出發(fā)開車到B點(diǎn)辦事(規(guī)定必須向北走,或向東走,不走回頭路),問他共有多少種不同的走法?其中從A點(diǎn)出發(fā)到某些交叉點(diǎn)的走法數(shù)已在圖2填出.
(1)根據(jù)以上原理和圖2的提示,算出從A出發(fā)到達(dá)其余交叉點(diǎn)的走法數(shù),如果將走法數(shù)填入圖2的空?qǐng)A中,便可以借助所填數(shù)字回答:從A點(diǎn)出發(fā)到B點(diǎn)的走法共有 種:
(2)根據(jù)上面的原理和圖3的提示,請(qǐng)算出從A點(diǎn)出發(fā)到達(dá)B點(diǎn),并禁止通過交叉點(diǎn)C的走法有 種.
(3)現(xiàn)由于交叉點(diǎn)C道路施工,禁止通行。小明爸爸如果任選一種走法,從A點(diǎn)出發(fā)能順利開車到達(dá)B點(diǎn)(無返回)概率是
實(shí)踐應(yīng)用2
問題4.小明打算用 5種顏色給如下圖的5個(gè)區(qū)域染色,每個(gè)區(qū)域染一種顏色,相鄰的區(qū)域染不同的顏色,問共有 種不同的染色方法.
查看答案和解析>>
科目: 來源: 題型:
【題目】利客來超市新進(jìn)一批工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)求出每天的銷售利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價(jià)為多少元時(shí),每天的銷售利潤為4000元?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方形ABCD中,對(duì)角線BD所在的直線上有兩點(diǎn)E、F滿足BE=DF,連接AE、AF、CE、CF,如圖所示.
(1)求證:△ABE≌△ADF;
(2)試判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化。開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB,BC分別為線段,CD為雙曲線的一部分):
(1)分別求出線段AB和曲線CD的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)競賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目: 來源: 題型:
【題目】由我國完全自主設(shè)計(jì)、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試航任務(wù).某日航母在南海海域試航,如圖,海中有一個(gè)小島A,并測(cè)得該島四周10海里內(nèi)有暗礁,航母由西向東航行,開始在A島南偏西55°的B處,往東行駛20海里后到達(dá)該島的南偏西25°的C處,之后如果航母繼續(xù)向東航行,途中會(huì)有觸礁的危險(xiǎn)嗎?(參考數(shù)據(jù):sin55°=0.8,cos55°=0.6,tan55°=1.4,sin25°=0.4,cos25°=0.9,tan25°=0.5)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com