(2)在同一平面直角坐標系xOy中.描出補全后的表中各組數(shù)值所對應的點(x.).(x.).并畫出函數(shù).的圖象,(3)結合函數(shù)圖象.解決問題:當△APC有一個角是30°時.AP的長度約為 cm.">
科目: 來源: 題型:
【題目】在如圖所示的半圓中,P是直徑AB上一動點,過點P作PC⊥AB于點P,交半圓于點C,連接AC.已知AB=6cm,設A,P兩點間的距離為xcm,P,C兩點間的距離為cm,A,C兩點間的距離為cm.
小聰根據學習函數(shù)的經驗,分別對函數(shù),隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小聰?shù)奶骄窟^程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了,與x的幾組對應值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 2.83 | 2.24 | 0 | |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 | /tr>
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,),(x,),并畫出函數(shù),的圖象;
(3)結合函數(shù)圖象,解決問題:當△APC有一個角是30°時,AP的長度約為______cm.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,過點B作⊙O的切線BM,點A,C,D分別為⊙O的三等分點,連接AC,AD,DC,延長AD交BM于點E,CD交AB于點F.
(1)求證:CD∥BM;
(2)連接OE,若DE=m,求△OBE的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=x+2與雙曲線相交于點A(m,3).
(1)求反比例函數(shù)的表達式;
(2)畫出直線和雙曲線的示意圖;
(3)若P是坐標軸上一點,當OA=PA時.直接寫出點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是小東設計的“在三角形一邊上求作一個點,使這點和三角形的兩個頂點構成的三角形與原三角形相似”的尺規(guī)作圖過程.
已知:△ABC.
求作:在BC邊上求作一點P,使得△PAC∽△ABC.
作法:如圖,
①作線段AC的垂直平分線GH;
②作線段AB的垂直平分線EF,交GH于點O;
③以點O為圓心,以OA為半徑作圓;
④以點C為圓心,CA為半徑畫弧,交⊙O于點D(與點A不重合);
⑤連接線段AD交BC于點P.
所以點P就是所求作的點.
根據小東設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵CD=AC,
∴= .
∴∠ =∠ .
又∵∠ =∠ ,
∴△PAC∽△ABC( )(填推理的依據).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy內有三點:(0,﹣2),(1,﹣1),(2.17,0.37).則過這三個點_____(填“能”或“不能”)畫一個圓,理由是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,∠AOB=90°,AO=OB,C、D是弧AB上的兩點,∠AOD>∠AOC,
(1)0<sin∠AOC<sin∠AOD<1;
(2)1>cos∠AOC>cos∠AOD>0;
(3)銳角的正弦函數(shù)值隨角度的增大而______;
(4)銳角的余弦函數(shù)值隨角度的增大而______.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠C=90°,∠BAC=30°,延長CA至D點,使AD=AB.求:
(1)求∠D及∠DBC;
(2)求tanD及tan∠DBC;
(3)請用類似的方法,求tan22.5°.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1與x軸分別交于A(﹣1,0),B(3,0),與y軸交于點C.
(1)求拋物線解析式;
(2)在直線BC上方的拋物線上有點P,使△PBC面積為1,求出點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
(3)求證:AD是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com