科目: 來源: 題型:
【題目】如圖,在ABCD,點O是邊BC的中點,連接DO并延長,交AB的延長線于點E,連接BD、EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠BOD=100°,則當∠A= 時,四邊形BECD是矩形.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據圖中提供的信息解答下列問題:
(1)九(1)班的學生人數為 ,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m= ,n= ,表示“足球”的扇形的圓心角是 度;
(3)排球興趣小組4名學生中有3男1女,現在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中 ,∠A=∠B,D、E是邊AB上的點,DG∥AC,EF∥BC,DG、EF相 交于點H.
(1)∠HDE與∠HED是否相等?并說明理由.
解:∠HDE=∠HED.理由如下:
∵DG∥AC(已知)
∴ = ( )
∵ EF∥BC (已知)
∴ = ( )
又∵∠A=∠B (已知)
∴ = ( ).
(2)如果∠C=90°,DG、 EF有何位置關系?并仿照 (1)中的解答方法說明理由.
解: .理由如下:
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方形ABCD的邊長為1,延長C1D1到A1,以A1C1為邊向右作正方形A1C1C2D2,延長C2D2到A2,以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推….若A1C1=2,且點A,D2,D3…,D10都在同一直線上,則正方形A2C2C3D3的邊長是___,正方形AnnCn+1Dn+1的邊長是___.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖為二次函數y=ax2+bx+c的圖象,則下列說法中錯誤的是( )
A. abc>0B. 2a+b=1
C. 4a+2b+c<0D. 對于任意x均有ax2+bx≥a+b
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.
(1)求拋物線的解析式;
(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD,點P在射線CB上運動(不包含點B、C),連接DP,交AB于點M,作BE⊥DP于點E,連接AE,作∠FAD=∠EAB,FA交DP于點F.
(1)如圖a,當點P在CB的延長線上時,
①求證:DF=BE;
②請判斷DE、BE、AE之間的數量關系并證明;
(2)如圖b,當點P在線段BC上時,DE、BE、AE之間有怎樣的數量關系?請直接寫出答案,不必證明;
(3)如果將已知中的正方形ABCD換成矩形ABCD,且AD:AB=:1,其他條件不變,當點P在射線CB上時,DE、BE、AE之間又有怎樣的數量關系?請直接寫出答案,不必證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】鐵嶺“荷花節(jié)”舉辦了為期15天的“荷花美食”廚藝秀.小張購進一批食材制作特色美食,每盒售價為50元,由于食材需要冷藏保存,導致成本逐日增加,第x天(1≤x≤15且x為整數)時每盒成本為p元,已知p與x之間滿足一次函數關系;第3天時,每盒成本為21元;第7天時,每盒成本為25元,每天的銷售量為y盒,y與x之間的關系如下表所示:
第x天 | 1≤x≤6 | 6<x≤15 |
每天的銷售量y/盒 | 10 | x+6 |
(1)求p與x的函數關系式;
(2)若每天的銷售利潤為w元,求w與x的函數關系式,并求出第幾天時當天的銷售利潤最大,最大銷售利潤是多少元?
(3)在“荷花美食”廚藝秀期間,共有多少天小張每天的銷售利潤不低于325元?請直接寫出結果.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經過B、M兩點的⊙O交BC于G,交AB于點F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱[此過程中水溫y(℃)與開機時間x(分)滿足一次函數關系],當加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機時間x(分)成反比例關系],當水溫降至20℃時,飲水機又自動開始加熱…,重復上述程序(如圖所示),根據圖中提供的信息,解答下列問題:
(1)當0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數關系式;
(2)求圖中t的值;
(3)若小明在通電開機后即外出散步,請你預測小明散步45分鐘回到家時,飲水機內的溫度約為多少℃?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com