科目: 來源: 題型:
【題目】如圖,已知點A是反比例函數(shù)y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點B的反比例函數(shù)圖象的表達(dá)式為( 。
A. y=﹣ B. y= C. y=﹣ D. y=
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的對稱軸是直線,與軸相交于,兩點(點在點右側(cè)),與軸交于點.
(1)求拋物線的解析式和,兩點的坐標(biāo);
(2)如圖1,若點是拋物線上、兩點之間的一個動點(不與、重合),是否存在點,使四邊形的面積最大?若存在,求點的坐標(biāo)及四邊形面積的最大值;若不存在,請說明理由;
(3)如圖2,若點是拋物線上任意一點,過點作軸的平行線,交直線于點,當(dāng)時,求點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】在中,,,于點.
(1)如圖1,點,分別在,上,且,當(dāng),時,求線段的長;
(2)如圖2,點,分別在,上,且,求證:;
(3)如圖3,點在的延長線上,點在上,且,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標(biāo)為t.
①當(dāng)點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為l的正方形ABCD中,E是邊CD的中點,點P是邊AD上一點(與點A、D不重合),射線PE與BC的延長線交于點Q.
(1)求證:;
(2)過點E作交PB于點F,連結(jié)AF,當(dāng)時,①求證:四邊形AFEP是平行四邊形;
②請判斷四邊形AFEP是否為菱形,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校九年級舉行了主題為“珍惜海洋資源,保護(hù)海洋生物多樣性”的知識競賽活動.為了解全年級500名學(xué)生此次競賽成績(百分制)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).請根據(jù)圖表信息解答以下問題:
(1)本次調(diào)查一共隨機(jī)抽取了 個參賽學(xué)生的成績;
(2)表1中 ;
(3)所抽取的參賽學(xué)生的成績的中位數(shù)落在的“組別”是 ;
(4)請你估計,該校九年級競賽成績達(dá)到80分以上(含80分)的學(xué)生約有 人.
表1 知識競賽成績分組統(tǒng)計表
組別 | 分?jǐn)?shù)/分 | 頻數(shù) |
A | a | |
B | 10 | |
C | 14 | |
D | 18 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物y=ax2+bx+c(b<0)與軸只有一個公共點.
(1)若公共點坐標(biāo)為(2,0),求a、c滿足的關(guān)系式;
(2)設(shè)A為拋物線上的一定點,直線l:y=kx+1-k與拋物線交于點B、C兩點,直線BD垂直于直線y=-1,垂足為點D.當(dāng)k=0時,直線l與拋物線的一個交點在y軸上,且△ABC為等腰直角三角形.
①求點A的坐標(biāo)和拋物線的解析式;
②證明:對于每個給定的實數(shù)k,都有A、D、C三點共線.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,BD⊥AC,垂足為E,點F在BD的延長線上,且DF=DC,連接AF、CF.
(1)求證:∠BAC=2∠DAC;
(2)若AF=10,BC=4,求tan∠BAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com