科目: 來源: 題型:
【題目】如圖,直線y=-x+c與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A,B.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為線段OA上一動(dòng)點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N.
①點(diǎn)M在線段OA上運(yùn)動(dòng),若△BPN∽△APM,求點(diǎn)M的坐標(biāo);
②過點(diǎn)N作NQ⊥AB于Q,當(dāng)N點(diǎn)坐標(biāo)是多少時(shí),NQ取得最大值,最大值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P, AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=8,求MN·MC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸、y軸分別交于B、A兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn)C,連接CO,過C作CD⊥x軸于D,已知tan∠ABO=,OB=4,OD=2.
(1)求直線AB和反比例函數(shù)的解析式;
(2)在x軸上有一點(diǎn)E,使△CDE與△COB的面積相等,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)A是我市某小學(xué),在位于學(xué)校南偏西15°方向距離120米的C點(diǎn)處有一消防車.某一時(shí)刻消防車突然接到報(bào)警電話,告知在位于C點(diǎn)北偏東75°方向的F點(diǎn)處突發(fā)火災(zāi),消防隊(duì)必須立即沿路線CF趕往救火.已知消防車的警報(bào)聲傳播半徑為110米,問消防車的警報(bào)聲對(duì)學(xué)校是否會(huì)造成影響?若會(huì)造成影響,已知消防車行駛的速度為每小時(shí)60千米,則對(duì)學(xué)校的影響時(shí)間為幾秒?(≈3.6,結(jié)果精確到1秒)
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有一段120m的籬笆,準(zhǔn)備用這些籬笆借助一段墻角圍成如圖所示兩塊面積相同的矩形場地養(yǎng)雞.
(1)如圖所示,若圍成的場地總面積為1750m2,則該場地的寬(圖中縱向)應(yīng)為多少?
(2)能不能圍成面積為2000m2的場地?若能,求出此時(shí)籬笆的寬;若不能,求圍成場地面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣5,0),對(duì)稱軸為直線x=﹣2,給出四個(gè)結(jié)論:①abc>0;②4a+b=0;③若點(diǎn)B(﹣3,y1)、C(﹣4,y2)為函數(shù)圖象上的兩點(diǎn),則y2<y1;④a+b+c=0.其中,正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E為AD的中點(diǎn),已知△DEF的面積為S,則四邊形ABCE的面積為( 。
A. 8S B. 9S C. 10S D. 11S
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸相交于點(diǎn)A(﹣1,0)、B(4,0),與y軸相交于點(diǎn)C.
(1)求該函數(shù)的表達(dá)式;
(2)點(diǎn)P為該函數(shù)在第一象限內(nèi)的圖象上一點(diǎn),過點(diǎn)P作PQ⊥BC,垂足為點(diǎn)Q,連接PC.
①求線段PQ的最大值;
②若以點(diǎn)P、C、Q為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=16cm,BC=8cm,一動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿著CB方向以2cm/s的速度運(yùn)動(dòng),另一動(dòng)點(diǎn)Q從A出發(fā)沿著AC邊以4cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(s).
(1)若△PCQ的面積是△ABC面積的,求t的值?
(2)△PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場經(jīng)營某種品牌的童裝,購進(jìn)時(shí)的單價(jià)是元.根據(jù)市場調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是元時(shí),銷售量是件.而銷售單價(jià)每降低元,就可多售出件.
求出銷售該品牌童裝獲得的利潤元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于元,且商場要完成不少于件的銷售
任務(wù),則商場銷售該品牌童裝獲得的最大利潤是多少元?
如果要使利潤不低于元,那么銷售單價(jià)應(yīng)在什么取值范圍內(nèi)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com