科目: 來源: 題型:
【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.直角尺的直角頂點放在點P處,直角尺的兩邊分別交AB、BC于點E、F,連接EF(如圖1).
(1)當點E與點B重合時,點F恰好與點C重合(如圖2).
①求證:△APB∽△DCP;
②求PC、BC的長.
(2)探究:將直角尺從圖2中的位置開始,繞點P順時針旋轉,當點E和點A重合時停止.在這個過程中(圖1是該過程的某個時刻),觀察、猜想并解答:
① tan∠PEF的值是否發(fā)生變化?請說明理由.
② 設AE=x,當△PBF是等腰三角形時,請直接寫出x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(2,1),B(1,-2),C(3,-1),P(m,n)是△ABC的邊AB上一點.
(1)畫出△A1B1C1,使△A1B1C1與△ABC關于點O成中心對稱,并寫出點A、P的對應點A1、P1的坐標.
(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出將△A1B1C1放大后的△A2B2C2,并分別寫出點A1、P1的對應點A2、P2的坐標.
(3)求sin∠B2A2C2的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個不透明的盒子中,裝有2個白球和1個紅球,這些球除顏色外其余都相同.
(1)你同意下列說法嗎?請說明理由.
①攪勻后從中任意摸出一個球,不是白球就是紅球,因此摸出白球和摸出紅球這兩個事件是等可能的.
②如果將摸出的第一個球放回攪勻后再摸出第二個球,兩次摸球就可能出現(xiàn)3種結果,即“都是紅球”、“都是白球”、“一紅一白”.這三個事件發(fā)生的概率相等.
(2)攪勻后從中任意摸出一個球,要使摸出紅球的概率為,應如何添加紅球?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2﹣2ax﹣3a與x軸交于A、B兩點(點A在點B的左側).
(Ⅰ)求出點A、B的坐標;
(Ⅱ)當a<0時,經(jīng)過點A的直線l:y=kx+a與y軸負半軸交于點C,與拋物線的另一個交點為D,點E是拋物線上的一個動點,且在直線l上方.
①若△ACE的面積的最大值為,求a的值;
②設P是拋物線的對稱軸上的一點,點Q在拋物線上,當以點A、D、P、Q為頂點的四邊形構成矩形時,請直接寫出此時點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,以點B為圓心,BC長為半徑畫弧,交線段AB于點D;以點A為圓心,AD長為半徑畫弧,交線段AC于點E,連結CD.
(1)若∠A=28°,求∠ACD的度數(shù).
(2)設BC=a,AC=b.
①線段AD的長是方程x2+2ax﹣b2=0的一個根嗎?說明理由.
②若AD=EC,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角,墻DF足夠長,墻DE長為9米,現(xiàn)用20米長的籬笆圍成一個矩形花園ABCD,點C在墻DF上,點A在墻DE上,(籬笆只圍AB,BC兩邊).
(Ⅰ)根據(jù)題意填表;
BC(m) | 1 | 3 | 5 | 7 |
矩形ABCD面積(m2) |
|
|
|
|
(Ⅱ)能夠圍成面積為100m2的矩形花園嗎?如能說明圍法,如不能,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形是平行四邊形,以AB為直徑的經(jīng)過點D, E是上一點,且.
(1)判斷CD與的位置關系,并說明理由;
(2) 若BC=2 .求陰影部分的面積.(結果保留π 的形式).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E.
(1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;
(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,有下列5個結論:①abc<0;②b2<4ac;③4a+2b+c>0;④2a+b=0;⑤a+b<m(am+b)(m≠1的實數(shù)),其中結論正確的個數(shù)有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com