科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與坐標軸交于A,B兩點,與反比例函數(shù)y=的圖象交于M,N兩點,過點M作MC⊥y軸于點C,且CM=1,過點N作ND⊥x軸于點D,且DN=1.已知點P是x軸(除原點O外)上一點.
(1)直接寫出M、N的坐標及k的值;
(2)將線段CP繞點P按順時針或逆時針旋轉(zhuǎn)90°得到線段PQ,當點P滑動時,點Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點Q的坐標;如果不能,請說明理由;
(3)當點P滑動時,是否存在反比例函數(shù)圖象(第一象限的一支)上的點S,使得以P、S、M、N四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點S的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,聰聰想在自己家的窗口A處測量對面建筑物CD的高度,他首先量出窗口A到地面的距離(AB)為16m,又測得從A處看建筑物底部C的俯角α為30°,看建筑物頂部D的仰角β為53°,且AB,CD都與地面垂直,點A,B,C,D在同一平面內(nèi).
(1)求AB與CD之間的距離(結果保留根號).
(2)求建筑物CD的高度(結果精確到1m).(參考數(shù)據(jù):,,,)
查看答案和解析>>
科目: 來源: 題型:
【題目】在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD'P,PD'的延長線交邊AB于點M,過點B作BN∥MP交DC于點N,連接AC,分別交PM,PB于點E,F.現(xiàn)有以下結論:
①連接DD',則AP垂直平分DD';
②四邊形PMBN是菱形;
③AD2=DPPC;
④若AD=2DP,則;
其中正確的結論是_____(填寫所有正確結論的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點A是雙曲線y=在第一象限的分支上的一個動點,連結AO并延長交另一分支于點B,以AB為斜邊作等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=(k<0)上運動,則k的值是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,若點P的橫坐標和縱坐標相等,則稱點P為完美點.已知二次函數(shù)的圖象上有且只有一個完美點,且當時,函數(shù)的最小值為﹣3,最大值為1,則m的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當k=0時,直線y=kx與x軸重合,求出此時的值;
②試說明無論k取何值,的值都等于同一個常數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,E為AB上一點,DE=DC,以D為圓心,以DB的長為半徑畫圓.
求證:(1)AC是⊙D的切線;(2)AB+EB=AC.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知x=1+2m,y=1﹣m.
(1)若點(x,y)恰為拋物線y=ax2﹣ax+1的頂點,求a的值;
(2)求y關于x的函數(shù)表達式;
(3)若﹣3≤m≤1,x≤0,求y的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45°,給出以下五個結論:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正確的序號是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com