已知橢圓
的左右焦點分別是
,直線
與橢圓
交于兩點
且當
時,M是橢圓
的上頂點,且△
的周長為6.
(1)求橢圓的方程;
(2)設橢圓的左頂點為A,直線
與直線:
分別相交于點,問當
變化時,以線段
為直徑的圓
被軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.
解:(1)當時,直線的傾斜角為
,所以:
…………3分
解得:, …………………………………………………………5分
所以橢圓方程是:;…………………………………………………………6分
當時,直線
的方程為:
,此時,
點的坐標分別是
,又
點坐標是
,由圖可以得到
兩點坐標分別是
,以
為直徑的圓過右焦點,被
軸截得的弦長為6,猜測當
變化時,以
為直徑的圓恒過焦點
,被
軸截得的弦長為定值6,………………………………………………………………8分
證明如下:設點點的坐標分別是
,則直線
的方程是:
,
所以點的坐標是
,同理,點
的坐標是
,…………………9分
由方程組得到:
,
所以:,………………………………………11分
從而:
=0,
所以:以為直徑的圓一定過右焦點
,被
軸截得的弦長為定值6。……………13分
科目:高中數(shù)學 來源:2012-2013學年安徽省高三第一次月考理科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的左右焦點分別是
,直線
與橢圓
交于兩點
,
.當
時,M恰為橢圓
的上頂點,此時△
的周長為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左頂點為A,直線
與直線
分別相交于點
,
,問當
變化時,以線段為直徑的圓被
軸截得的弦長是否為定值?若是,求出這個定值,
若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓
的左右焦點分別是
,直線
與橢圓
交于兩點
且當
時,M是橢圓
的上頂點,且△
的周長為6.
(1)求橢圓的方程;
(2)設橢圓的左頂點為A,直線
與直線:
分別相交于點,問當
變化時,以線段
為直徑的圓
被軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓
的左右焦點分別是
,直線
與橢圓
交于兩點
且當
時,M是橢圓
的上頂點,且△
的周長為6.
(1)求橢圓的方程;
(2)設橢圓的左頂點為A,直線
與直線:
分別相交于點,問當
變化時,以線段
為直徑的圓
被軸截得的弦長是否為定值?若是,求出這個定值,若不是,
說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com