如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過(guò)M點(diǎn)作⊙O的切線AM,C是AM的中點(diǎn),AN交⊙O于B點(diǎn),若四邊形BCON是平行四邊形.

(Ⅰ)求AM的長(zhǎng);
(Ⅱ)求sin∠ANC.
(1);(2).

試題分析:本題主要以圓為幾何背景考查切線的性質(zhì)以及求邊長(zhǎng)求角,可以運(yùn)用平行四邊形的知識(shí)證平行和相等.第一問(wèn),由于是平行四邊形,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024042668475.png" style="vertical-align:middle;" />是圓的切線,所以,所以,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024042730313.png" style="vertical-align:middle;" />是的中點(diǎn),所以,所以符合等腰三角形的性質(zhì);第二問(wèn),在中先求,在中,求,在中,求.
試題解析:(Ⅰ)連接,則,因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024042637559.png" style="vertical-align:middle;" />是平行四邊形,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024042668475.png" style="vertical-align:middle;" />是的切線,所以,可得,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024042730313.png" style="vertical-align:middle;" />是的中點(diǎn),所以,得,故.         (5分)
(Ⅱ)作點(diǎn),則,由(Ⅰ)可知,
.                   (10分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)是圓上的點(diǎn)
(1)求的取值范圍;
(2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,自⊙外一點(diǎn)引切線與⊙切于點(diǎn)的中點(diǎn),過(guò)引割線交⊙兩點(diǎn). 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)為圓的弦的中點(diǎn),則弦所在直線方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙的割線交⊙、兩點(diǎn),割線經(jīng)過(guò)圓心,已知,,,則⊙的半徑是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O1和⊙O2交于點(diǎn)C和D,⊙O1上的點(diǎn)P處的切線交⊙O2于A、B點(diǎn),交直線CD于點(diǎn)E,M是⊙O2上的一點(diǎn),若PE=2,EA=1,,那么⊙O2的半徑為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

的圓心坐標(biāo)是(  )
A.(2,3) B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

經(jīng)過(guò)圓的圓心且與直線平行的直線方程是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)點(diǎn)的圓C與直線相切于點(diǎn).
(1)求圓C的方程;
(2)已知點(diǎn)的坐標(biāo)為,設(shè)分別是直線和圓上的動(dòng)點(diǎn),求的最小值.
(3)在圓C上是否存在兩點(diǎn)關(guān)于直線對(duì)稱,且以為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫(xiě)出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案