在極坐標(biāo)系中,已知圓C:ρ=6cosθ,則圓C的半徑為
3
3
分析:把圓的極坐標(biāo)方程化為直角坐標(biāo)方程,并化為圓的標(biāo)準(zhǔn)形式,從而求得圓的半徑.
解答:解:圓C:ρ=6cosθ,即 ρ2=6ρcosθ,化為直角坐標(biāo)方程為 x2+y2=6x,即 (x-3)2+y2=9,
故圓的半徑等于3,
故答案為3.
點(diǎn)評(píng):本題主要考查把圓的極坐標(biāo)方程化為極坐標(biāo)防乘的方法,圓的標(biāo)準(zhǔn)方程的特征,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,已知圓ρ=4cosθ的圓心為A,點(diǎn)B(6
2
,
4
)
,則線段AB的長為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

坐標(biāo)系與參數(shù)方程,在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(3,
π3
)
,半徑為3,點(diǎn)Q在圓周上運(yùn)動(dòng),
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直角坐標(biāo)系的原點(diǎn)與極點(diǎn)O重合,x軸非負(fù)半軸與極軸重合,M為OQ中點(diǎn),求點(diǎn)M的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•湖南模擬)在極坐標(biāo)系中,已知圓ρ=2cosθ與雙曲線ρ2cos2θ-4ρ2sin2θ=4.則它們的交點(diǎn)的直角坐標(biāo)為
(2,0)
(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知圓ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,則實(shí)數(shù)a的值為
2或-7
2或-7

查看答案和解析>>

同步練習(xí)冊答案