已知某圓的極坐標方程是,求:
(1)求圓的普通方程和一個參數(shù)方程;
(2)圓上所有點的最大值和最小值.

(1)即圓的普通方程為:。 參數(shù)方程為:    (為參數(shù)) ;(2)最大值為:9,最小值為:1.

解析試題分析:(1)圓的普通方程與圓的極坐標方程之間的轉(zhuǎn)換關系在于圓上一點與極徑,極角間的關系:,圓的普通方程與圓的參數(shù)方程的關系也在于此,即圓上一點與圓半徑,圓上點與圓心連線與軸正向夾角的關系:;(2)利用圓的參數(shù)方程,將轉(zhuǎn)化為關于的三角函數(shù)關系求最值,注意這里處理要注意用換元法(不同于一般三角函數(shù)處理方法,即轉(zhuǎn)化為的形式),得到三角函數(shù)與二次函數(shù)的復合函數(shù).
試題解析:
由圓上一點與極徑,極角間的關系:
,

即圓的普通方程為:。                               2分
可得圓心坐標為 ,半徑  
所以其參數(shù)方程為:    (為參數(shù)) 。                         4分
由圓上一點與圓的參數(shù)方程的關系得:
          5分
,, 則.
所以                                       6分
時,最小值是1;                                                    8分
時,最大值是9.                                                     10分
考點:(1)圓的極坐標方程與圓的參數(shù)方程;(2)參數(shù)方程求最值應用。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

(坐標系與參數(shù)方程選做題)設點的極坐標為,直線過點且與極軸所成的角為,則直線的極坐標方程為      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,以為極點,軸非負半軸為極軸建立坐標系,已知曲線的極坐標方程為,直線的參數(shù)方程為: (為參數(shù)),兩曲線相交于兩點. 求:(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓的極坐標方程為:.
(1)將極坐標方程化為普通方程;
(2)若點在該圓上,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知直線的參數(shù)方程為(為參數(shù)),直線與拋物線交于兩點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在極坐標系下,已知圓O:和直線:.
(1) 求圓O和直線l的直角坐標方程;
(2) 當θ∈(0,π)時,求直線l與圓O公共點的一個極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的參數(shù)方程為為參數(shù)),曲線在點處的切線為.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的參數(shù)方程是為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)寫出的極坐標方程和的直角坐標方程;
(2)已知點、的極坐標分別是、,直線與曲線相交于、兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

(坐標系與參數(shù)方程選做題)曲線對稱的曲線的極坐標方程為        。

查看答案和解析>>

同步練習冊答案