【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng),時(shí),證明:(其中為自然對(duì)數(shù)的底數(shù)).
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)當(dāng) 時(shí), ,分類討論:(1) ;(2),可得單調(diào)區(qū)間;(2)當(dāng) 時(shí),要 證
轉(zhuǎn)化為證 ,設(shè),判斷其單調(diào)性,得 ,此題得證。
(1)當(dāng)時(shí),
討論:1’當(dāng)時(shí), , ,
此時(shí)函數(shù)的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間
2’當(dāng)時(shí),令 或
①當(dāng),即時(shí),此時(shí)
此時(shí)函數(shù)單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間
②當(dāng),即時(shí),此時(shí)在和上函數(shù),
在上函數(shù),此時(shí)函數(shù)單調(diào)遞增區(qū)間為和;
單調(diào)遞減區(qū)間為
③當(dāng),即時(shí),此時(shí)函數(shù)單調(diào)遞增區(qū)間為和;
單調(diào)遞減區(qū)間為
(2)證明:當(dāng)時(shí)
只需證明: 設(shè)
問題轉(zhuǎn)化為證明,
令, ,
為上的增函數(shù),且,
存在唯一的,使得,
在上遞減,在上遞增
不等式得證
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個(gè)數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照5%的比例進(jìn)行分層抽樣,統(tǒng)計(jì)結(jié)果按, , , , 分組,整理如下圖:
(Ⅰ)寫出頻率分布直方圖(圖乙)中的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷售量的方差分別為, ,試比較與的大。ㄖ恍鑼懗鼋Y(jié)論);
(Ⅱ)從甲種酸奶日銷售量在區(qū)間的數(shù)據(jù)樣本中抽取3個(gè),記在內(nèi)的數(shù)據(jù)個(gè)數(shù)為,求的分布列;
(Ⅲ)估計(jì)1200個(gè)日銷售量數(shù)據(jù)中,數(shù)據(jù)在區(qū)間中的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) (為實(shí)數(shù)).
(1)若,求證:函數(shù)在上是增函數(shù);
(2)求函數(shù)在上的最小值及相應(yīng)的的值;
(3)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的定義域;
(2)判定函數(shù)在的單調(diào)性,并證明你的結(jié)論;
(3)若當(dāng)時(shí), 恒成立,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年五一假期期間,高速公路車輛較多。某調(diào)査公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào) 査,將他們在某段高速公路的車速分成六段: 后得到如圖的頻率分布直方圖.
(Ⅰ)求這40輛小型車輛車速的眾數(shù)和中位數(shù)以及平均數(shù)的估計(jì)值.
(Ⅱ)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求的值;
(2)討論方程的實(shí)數(shù)根的情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校組織“中國詩詞”競賽,在“風(fēng)險(xiǎn)答題”的環(huán)節(jié)中,共為選手準(zhǔn)備了三類不同的題目,選手每答對(duì)一個(gè)類、類或類的題目,將分別得到分, 分, 分,但如果答錯(cuò),則相應(yīng)要扣去分, 分, 分,根據(jù)平時(shí)訓(xùn)練經(jīng)驗(yàn),選手甲答對(duì)類、類或類的題目的概率分別為、、,若要每一次答題的均分更大一些,則選手甲應(yīng)選擇的題目類型應(yīng)為_________.(填, 或)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民區(qū)的物業(yè)部門每月向居民收取衛(wèi)生費(fèi),計(jì)費(fèi)方法如下:3人和3人以下的住戶,每戶收取5元;超過3人的住戶,每超出1人加收1.2元.設(shè)計(jì)一個(gè)算法,根據(jù)輸入的人數(shù),計(jì)算應(yīng)收取的衛(wèi)生費(fèi),并畫出程序框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)證明: 為上的增函數(shù);
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com