【題目】2017年五一假期期間,高速公路車輛較多。某調査公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調 査,將他們在某段高速公路的車速分成六段: 后得到如圖的頻率分布直方圖.

(Ⅰ)求這40輛小型車輛車速的眾數(shù)和中位數(shù)以及平均數(shù)的估計值.

(Ⅱ)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

【答案】(Ⅰ)答案見解析;(Ⅱ) .

【解析】試題分析:

(1)結合所給的頻率分布直方圖可得眾數(shù)的估計值等于77.5,中位數(shù)的估計值為77.5 ,平均數(shù)的估計值

(2)列出所有可能的事件,結合古典概型公式可得車速在的車輛恰有一輛的概率是.

試題解析:

(Ⅰ)眾數(shù)的估計值為最高的矩形的中點,即眾數(shù)的估計值等于77.5.

設圖中虛線所對應的車速為,則中位數(shù)的估計值為:

,解得

即中位數(shù)的估計值為77.5

平均數(shù)的估計值

(Ⅱ)從圖中可知,車速在的車輛數(shù)為: (輛),

車速在的車輛數(shù)為: (輛)

設車速在的車輛設為,車速在的車輛設為,則所有基本事件有:

, ,共 15 種

其中車速在的車輛恰有一輛的事件有: 共8種

所以,車速在的車輛恰有一輛的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】寫出求過兩點M(-2,-1)N(2,3)的直線與坐標軸圍成面積的一個算法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, 底面,且 , 、分別是的中點.

(1)求證:平面平面;

(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,我海監(jiān)船在島海域例行維權巡航,某時刻航行至處,此時測得其東北方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處.

1)求此時該外國船只與島的距離;

2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行,為了將該船攔截在離海里處,不讓其進入海里內的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列的項數(shù)均為,則將數(shù)列的距離定義為.

(1)求數(shù)列1,3,5,6和數(shù)列2,3,10,7的距離.

(2)記為滿足遞推關系的所有數(shù)列的集合,數(shù)列中的兩個元素,且項數(shù)均為.若 ,數(shù)列的距離小于2016,求的最大值.

(3)記是所有7項數(shù)列(其中 )的集合, ,且中的任何兩個元素的距離大于或等于3.求證: 中的元素個數(shù)小于或等于16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求函數(shù)的單調區(qū)間;

)當,時,證明:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù), ).以原點為極點,以軸正半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.設曲線的極坐標方程為.

(Ⅰ)設為曲線上任意一點,求的取值范圍;

(Ⅱ)若直線與曲線交于兩點, ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從兩地區(qū)分別隨機調查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到地區(qū)用戶滿意度評分的頻率分布直方圖和地區(qū)用戶滿意度評分的頻數(shù)分布表.

地區(qū)用戶滿意度評分的頻率分布直方圖

地區(qū)用戶滿意度評分的頻數(shù)分布表

滿意度評分分組

頻數(shù)

2

8

14

10

6

(1)在答題卡上作出地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結論即可);

(2)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:

估計哪個地區(qū)的滿意度等級為不滿意的概率大?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角梯形中,是邊長為2的等邊三角形,沿折起,使處,且;然后再將沿折起,使處,且面,在面的同側

() 求證:平面;

() 求平面與平面所構成的銳二面角的余弦值

查看答案和解析>>

同步練習冊答案