A. | (1,$\frac{2}{3}$) | B. | (1,$\frac{1}{3}$) | C. | ($\frac{1}{3}$,1) | D. | ($\frac{2}{3}$,1) |
分析 根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,列出方程求出A,B的中點橫坐標(biāo)的和,可得線段AB的中點橫坐標(biāo),利用點差法,結(jié)合直線AB的斜率為3,可得線段AB的中點縱坐標(biāo),即可求出線段AB的中點P的坐標(biāo).
解答 解:∵F是拋物線y2=2x的焦點,
∴F($\frac{1}{2}$,0),準(zhǔn)線方程x=-$\frac{1}{2}$.
設(shè)A(x1,y1),B(x2,y2)
∴|AF|+|BF|=x1+$\frac{1}{2}$+x2+$\frac{1}{2}$=3,
∴x1+x2=2,
∴線段AB的中點橫坐標(biāo)為1,
∵y2=2x,
∴y12=2x1,y22=2x2,
∴(y1+y2)(y1-y2)=2(x1-x2)
∵直線AB的斜率為3,
∴y1+y2=$\frac{2}{3}$
∴線段AB的中點縱坐標(biāo)為$\frac{1}{3}$.
故選:B.
點評 本題考查解決拋物線上的點到焦點的距離問題,解題的關(guān)鍵是利用拋物線的定義將到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+$\sqrt{6}$ | B. | -1+2$\sqrt{6}$ | C. | -1+$\sqrt{5}$ | D. | -1+2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(0)<f(-$\frac{1}{3}$)<f($\frac{2}{5}$) | B. | f(-$\frac{1}{3}$)<f(0)<f($\frac{2}{5}$) | C. | f($\frac{2}{5}$)<f(-$\frac{1}{3}$)<f(0) | D. | f(0)<f($\frac{2}{5}$)<f(-$\frac{1}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
危險駕駛 | 非危險駕駛 | 合計 | |
男駕駛員 | 15 | 45 | 60 |
女駕駛員 | 15 | 25 | 40 |
合計 | 30 | 70 | 100 |
P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,2) | C. | (-∞,0) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com