在數(shù)列{}中,若(3n-1)=1,則=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知函數(shù)f(x)=
x+1-tt-x
(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過程停止.若可用上述方法構(gòu)造出一個(gè)常數(shù)列{xn},求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知函數(shù)f(x)=
x+1-tt-x
(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過程停止.若取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn},求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

將數(shù)列{an} 中的所有項(xiàng)按第一排三項(xiàng),以下每一行比上一行多一項(xiàng)的規(guī)則排成如數(shù)表:記表中的第一列數(shù)a1,a4,a8,…構(gòu)成的數(shù)列為{bn},已知:
①在數(shù)列{bn} 中,b1=1,對(duì)于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q(q>0)的等比數(shù)列;
數(shù)學(xué)公式.請(qǐng)解答以下問題:
(1)求數(shù)列{bn} 的通項(xiàng)公式;
(2)求上表中第k(k∈N*)行所有項(xiàng)的和S(k);
(3)若關(guān)于x的不等式數(shù)學(xué)公式數(shù)學(xué)公式上有解,求正整數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=數(shù)學(xué)公式(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過程停止.若取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn},求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市盧灣區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過程停止.若取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn},求實(shí)數(shù)t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案