【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計 | |
男員工 | |||
女員工 | |||
合計 |
(2)為提高員工勞動的積極性,工廠實行累進計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調(diào)查,設(shè)實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
.
【答案】(1)見解析; (2).
【解析】
(1)利用列聯(lián)表求得的觀測值,即可判斷.
(2)設(shè)2名女員工中實得計件工資不少于3100元的人數(shù)為,1名男員工中實得計件工資在3100元以及以上的人數(shù)為,則,,根據(jù)X、Y的相應(yīng)取值求得Z的相應(yīng)取值時的概率,列出分布列,利用期望公式求得期望.
(1)
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計 | |
男員工 | 48 | 2 | 50 |
女員工 | 42 | 8 | 50 |
合計 | 90 | 10 | 100 |
因為的觀測值 ,
所以有的把握認為“生產(chǎn)能手”與性別有關(guān).
(2)當員工每月完成合格產(chǎn)品的件數(shù)為3000件時,
得計件工資為 元,
由統(tǒng)計數(shù)據(jù)可知,男員工實得計件工資不少于3100元的概率為,
女員工實得計件工資不少于3100元的概率為,
設(shè)2名女員工中實得計件工資不少于3100元的人數(shù)為,1名男員工中實得計件工資在3100元以及以上的人數(shù)為,則,,
的所有可能取值為,,,,
,
,
,
,
所以的分布列為
0 | 1 | 2 | 3 | |
故 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點, 離心率為,左右焦點分別為, 過點的直線交橢圓于兩點.
(1)求橢圓C的方程;
(2)當的面積為時, 求以為圓心且與直線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間在兩天內(nèi),每天生產(chǎn)10件某產(chǎn)品,其中第一天第二天分別生產(chǎn)了1件2件次品,而質(zhì)檢部每天要在生產(chǎn)的10件產(chǎn)品中隨意抽取4件進行檢查,若發(fā)現(xiàn)有次品,則當天的產(chǎn)品不能通過.
(1)求兩天全部通過檢查的概率;
(2)若廠內(nèi)對該車間生產(chǎn)的產(chǎn)品質(zhì)量采用獎懲制度,兩天全不通過檢查罰300元,通過1天,2天分別獎300元900元.那么該車間在這兩天內(nèi)得到獎金的數(shù)學(xué)期望是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體是一個棱長為2的空心蔬菜大棚,由8個鋼結(jié)構(gòu)(地面沒有)組合搭建而成的,四個側(cè)面及頂上均被可采光的薄膜覆蓋,已知為柱上一點(不在點、處),(),菜農(nóng)需要在地面正方形內(nèi)畫出一條曲線將菜地分隔為兩個不同的區(qū)域來種植不同品種的蔬菜以加強管理,現(xiàn)已知點為地面正方形內(nèi)的曲線上任意一點,設(shè)、分別為在點處觀測和的仰角.
(1)若,請說明曲線是何種曲線,為什么?
(2)若為柱的中點,且時,請求出點所在區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設(shè)點M為橢圓上第一象限內(nèi)一動點,A,B分別為橢圓的左頂點和下頂點,直線MB與x軸交于點C,直線MA與y軸交于點D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若規(guī)定問卷得分不低于70分的市民稱為“動物保護關(guān)注者”,則山圖中表格可得列聯(lián)表如下:
非“動物保護關(guān)注者” | 是“動物保護關(guān)注者” | 合計 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計 | 25 | 75 | 100 |
(1)請判斷能否在犯錯誤的概率不超過0.05的前提下認為“動物保護關(guān)注者”與性別有關(guān)?
(2)若問卷得分不低于80分的人稱為“動物保護達人”.現(xiàn)在從本次調(diào)查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女“動物保護達人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若給定非零實數(shù),對于任意實數(shù),總存在非零常數(shù),使得恒成立,則稱函數(shù)是上的級類周期函數(shù),若函數(shù)是上的2級2類周期函數(shù),且當時,,又函數(shù).若,,使成立,則實數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當時,證明:;
(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(1)討論函數(shù)的單凋性;
(2)若存在使得對任意的不等式(其中e為自然對數(shù)的底數(shù))都成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com