16.若函數(shù)f(x)=x+$\frac{(2a+1)x+1}{x}$+1為奇函數(shù),則a=-1.

分析 根據(jù)函數(shù)奇偶性的性質(zhì)得到f(-x)=-f(x),從而得到關(guān)于a的方程,解出即可.

解答 解:若函數(shù)$f(x)=x+\frac{(2a+1)x+1}{x}+1$為奇函數(shù),
則f(-x)=-x-$\frac{1}{x}$+2a+1+1=-f(x)=-x-$\frac{1}{x}$-(2a+1)-1,
∴2(2a+1)+2=0,則a=-1,
故答案為:-1.

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性的性質(zhì),熟練掌握函數(shù)的性質(zhì)是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某單位擬將新招聘的甲、乙等5名大學(xué)生安排到三個(gè)不同的部門工作,每個(gè)部門至少安排一人,若甲、乙不安排到同一個(gè)部門,則不同的安排方法種數(shù)為(  )
A.150B.120C.114D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:若平面α與平面β相交,則α內(nèi)不存在與β平行的直線,命題q:若平面α與平面β不垂直,則α內(nèi)不存在與β垂直的直線,那么下列復(fù)合命題中真命題的是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=cosx•cos(x-θ)-$\frac{1}{2}$cosθ,θ∈(0,π).已知當(dāng)x=$\frac{π}{3}$時(shí),f(x)取得最大值.
(1)求θ的值;
(2)設(shè)g(x)=2f($\frac{3}{2}$x),求函數(shù)g(x)在[0,$\frac{π}{3}$]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知扇形的周長(zhǎng)為8cm,圓心角為2弧度,則該扇形的面積為4cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b∈R,i是虛數(shù)單位,若a+i與2-bi互為共軛復(fù)數(shù),則(a+bi)2=(  )
A.3-4iB.3+4iC.5-4iD.5+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)$z=\frac{3+i}{1-i}$,則$|{\overline z}|$=( 。
A.1B.2C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)x∈[0,2π],利用單位圓解不等式sin(x+$\frac{π}{4}$)≥-$\frac{\sqrt{2}}{2}$可得x∈$\frac{3π}{2}$≤x≤$\frac{7π}{4}$或0≤x≤$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.直線l1,l2,l3相交于A(2,5),B(-2,1),C(8,-3).如圖所示:
(1)用不等式組表示圖中的陰影部分;
(2)設(shè)目標(biāo)函數(shù)為z=3x-4y,圖中的陰影部分是對(duì)x,y的約束條件,求在此約束條件下,目標(biāo)函數(shù)的最大值和最小值;
(3)設(shè)目標(biāo)函數(shù)為z=3x+4y,圖中的陰影部分是對(duì)x,y的約束條件,求在此約束條件下,目標(biāo)函數(shù)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案