A. | 20 | B. | 22 | C. | 28 | D. | 24 |
分析 算出雙曲線的焦距|F1F2|=2$\sqrt{73}$,利用勾股定理得出m2+n2=|F1F2|2=292,結合|m-n|=2a=14,聯(lián)解得出mn=48,即可算出△PF1F2的面積.
解答 解:∵雙曲線$\frac{{x}^{2}}{49}$-$\frac{{y}^{2}}{24}$=1中,a=7,b=2$\sqrt{6}$,
∴c=$\sqrt{73}$,得焦距|F1F2|=2$\sqrt{73}$
設|PF1|=m,|PF2|=n,
∵PF1⊥PF2,∴m2+n2=|F1F2|2=292…①
由雙曲線的定義,得|m-n|=2a=14…②
①②聯(lián)立,得mn=48
∴△PF1F2的面積S=$\frac{1}{2}$mn=24
故選:D.
點評 本題給出等軸雙曲線的焦點三角形為直角三角形,求三角形的面積.著重考查了雙曲線的定義與簡單幾何性質(zhì)、勾股定理與三角形的面積公式等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 平行或異面 | B. | 異面 | C. | 相交 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com