已知橢圓>0,>0)的左焦點為F,右頂點為A,上頂點為B,若
BF⊥BA,則稱其為“優(yōu)美橢圓”,那么“優(yōu)美橢圓”的離心率為      。
|AB|2=2+2,|BF|=,|FA|=+,在Rt⊿ABF中,(+)2=2+2+2
化簡得:2+-2=0,等式兩邊同除以2得:,解得:=。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的中心為坐標原點,它在x軸上的一個焦點與短軸兩端點連成60°的角,兩準線間的距離等于8,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知長方形ABCD, AB=2,BC=1.以AB的中點為原點建立如圖8所示的平面直角坐標系.
(Ⅰ)求以AB為焦點,且過C、D兩點的橢圓的標準方程;
(Ⅱ)過點P(0,2)的直線交(Ⅰ)中橢圓于M,N兩點,是否存在直線,使得以弦MN為直徑的圓恰好過原點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過直線上的一點作一個長軸最短的橢圓,使其焦點為,則橢圓的方程為         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓),過橢圓中心O作互相垂直的兩條弦AC、BD,設點A、B的離心角分別為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓A:軸負半軸交于B點,過B的弦BE與軸正半軸交于D點,且2BD=DE,曲線C是以A,B為焦點且過D點的橢圓。(1)求橢圓的方程;(2)點P在橢圓C上運動,點Q在圓A上運動,求PQ+PD的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是長軸在軸上的橢圓上的點,分別為橢圓的兩個焦點,橢圓的半焦距為,則的最大值與最小值之差一定是(        )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的內(nèi)接矩形的面積的最大值為              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓過點(-2,),則其焦距為( )
A.2B.2C.4D.4

查看答案和解析>>

同步練習冊答案