過直線
:
上的一點
作一個長軸最短的橢圓,使其焦點為
,則橢圓的方程為
.
設直線
上的點為
,取
關于直線
的對稱點
,據(jù)橢圓定義,
,當且僅當
共線,即
,也即
時,上述不等式取等號,此時
,
點
坐標為
,據(jù)
得,
,橢圓的方程為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知△
ABC的兩個頂點
A、
B分別是橢圓
的左、右焦點, 三個內角
A、
B、
C滿足
, 則頂點
C的軌跡方程是( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
是橢圓
上一點,
、
是橢圓的兩個焦點,求
的最大值與最小值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左、右焦點分別為
,若以
為圓心,
為半徑作圓
,過橢圓上一點
作此圓的切線,切點為
,且
的最小值不小于為
.
(1)求橢圓的離心率
的取值范圍;
(2)設橢圓的短半軸長為
,圓
與
軸的右交點為
,過點
作斜率為
的直線
與橢圓相交于
兩點,若
,求直線
被圓
截得的弦長
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓
(
>0,
>0)的左焦點為F,右頂點為A,上頂點為B,若
BF⊥BA,則稱其為“優(yōu)美橢圓”,那么“優(yōu)美橢圓”的離心率為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
=1(
a>
b>0),點
P為其上一點,
F1、
F2為橢圓的焦點,∠
F1PF2的外角平分線為
l,點
F2關于
l的對稱點為
Q,
F2Q交
l于點
R.
(1)當
P點在橢圓上運動時,求
R形成的軌跡方程;
(2)設點
R形成的曲線為
C,直線
l:
y=
k(
x+
a)與曲線
C相交于
A、
B兩點,當△
AOB的面積取得最大值時,求
k的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在橢圓
上找一點,使這一點到直線
的距離的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知m,n,m+n成等差數(shù)列,m,n,mn成等比數(shù)列,則橢圓
的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
從橢圓短軸的一個端點看兩焦點的視角是120
0,則這個橢圓的離心率e="( " )
查看答案和解析>>