17.函數(shù)f(x)=lg(sinx-$\frac{1}{2}$)的定義域為$\left\{{\left.x\right|\frac{π}{6}+2kπ<x<\frac{5π}{6}+2kπ,k∈Z}\right\}$.

分析 根據(jù)函數(shù)成立的條件,即可求函數(shù)的定義域

解答 解:要使函數(shù)有意義,
則sinx-$\frac{1}{2}$>0,
即sinx>$\frac{1}{2}$,
解得:$\frac{π}{6}$+2kπ<x<$\frac{5π}{6}$+2kπ,k∈Z,
即函數(shù)的定義域為($\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ),k∈Z,
故答案為:$\left\{{\left.x\right|\frac{π}{6}+2kπ<x<\frac{5π}{6}+2kπ,k∈Z}\right\}$.

點評 本題主要考查函數(shù)定義域的求法,要求熟練掌握常見函數(shù)成立的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,若$\frac{sinC}{sinA}$=3,b2-a2=$\frac{5}{2}$ac,則cosB的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知角α終邊上一點$P({-3,b}),sinα=\frac{5}$.
(1)求tanα的值;
(2)設(shè)$f(α)=\frac{{sin({{{540}°}-α})cos({{{270}°}-α})cos({{{180}°}+α})}}{{tan({{{900}°}-α})sin({{{810}°}+α})sin({-α})}}$,試求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an},滿足a3=7,a5+a7=26.
(Ⅰ)求數(shù)列{an}的通項an;
(Ⅱ)令bn=$\frac{1}{{{a}_{n}}^{2}-1}$(n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知等差數(shù)列{an}的前n項和為Sn,a1=-11,a5+a6=-4,Sn取得最小值時n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.有一塊鐵皮零件,其形狀是由邊長為30cm的正方形截去一個三角形ABF所得的五邊形ABCDE,其中AF=8cm,BF=6cm,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮DMPN,使得矩形相鄰兩邊分別落在CD,DE上,另一頂點P落在邊CB或BA邊上.設(shè)DM=xcm,矩形DMPN的面積為ycm2
(1)試求出矩形鐵皮DMPN的面積y關(guān)于x的函數(shù)解析式,并寫出定義域;
(2)試問如何截。磝取何值時),可使得到的矩形DMPN的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.
(1)求異面直線AD1與BD所成的角
(2)求證:C1O∥面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)對于一切實數(shù)x滿足f(2-x)=f(2+x),若方程f(x)=0恰有兩個不同的實根,那么這兩個根的和是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知定點A(3,0),動點M滿足|$\overrightarrow{MA}$|=2|$\overrightarrow{MO}$|,那么落在圓C:(x-1)2+(y-1)2=1上的點M連成的直線方程為2x-y-2=0.

查看答案和解析>>

同步練習(xí)冊答案