【題目】如圖,設(shè)鐵路長為,且,為將貨物從運往,現(xiàn)在上的距點的點處修一公路至,已知單位距離的鐵路運費為,公路運費為.

(1)將總運費表示為的函數(shù);

(2)如何選點才使總運費?

【答案】(1)(2)當在距離點時的點處修筑公路至時總運費最省

【解析】

試題分析:(1)有已知中鐵路長為,且,為將貨物從運往,現(xiàn)在上距點的點處修一條公路至,已知單位距離的鐵路運費為,公路運費為,我們可以計算公路上的運費和鐵路上的運費,進而得到由的總運費;(2)由(1)中所得的總運費表示為的函數(shù),利用導(dǎo)數(shù)法,我們可以分析出函數(shù)的單調(diào)性,以及憨厚的最小值點,得到答案.

試題解析:(1)依題中,鐵路長為,且,將貨物從運往,現(xiàn)在上的距點的點處修一公路至,且單位距離的鐵路運費為,公路運費為.

鐵路上的運費為,公路上的運費為,

則由的總運費為.

(2),令,解得,或.

時, ;當時,

故當時, 取得最小值, 即當在距離點時的點處修筑公路至時總運費最省.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市一汽車出租公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表:

A車型 B車型

出租天數(shù)

1

2

3

4

5

6

7

出租天數(shù)

1

2

3

4

5

6

7

車輛數(shù)

5

10

30

35

15

3

2

車輛數(shù)

14

20

20

16

15

10

5

(Ⅰ)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;

(Ⅱ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;

(Ⅲ)

(。┰噷懗A,B兩種車型的出租天數(shù)的分布列及數(shù)學(xué)期望;

(ⅱ)如果兩種車輛每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛(注:兩種車型的采購價格相當),請你根據(jù)所學(xué)的統(tǒng)計知識,建議應(yīng)該購買哪一種車型,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時沒有公布甲、乙兩班最后一位選手的成績.

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,過拋物線上一點作拋物線的切線軸于點,交軸于點,當時,

1)判斷的形狀,并求拋物線的方程;

2)若兩點在拋物線上,且滿足,其中點,若拋物線上存在異于的點,使得經(jīng)過三點的圓和拋物線在點處有相同的切線,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (ab>0)的離心率為,點P(0,1)和點A(m,n)(m≠0)都在橢圓C上,直線PAx軸于點M.

(1)求橢圓C的方程,并求點M的坐標(用m,n表示);

(2)設(shè)O為原點,點B與點A關(guān)于x軸對稱,直線PBx軸于點N.問:y軸上是否存在點Q,使得∠OQM=∠ONQ?若存在,求點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個相等實數(shù)根.

(1)求函數(shù)f(x)的解析式;

(2)當x∈[1,2]時,求f(x)的值域;

(3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為 (為參數(shù)).

(I)寫出直線的一般方程與曲線的直角坐標方程,并判斷它們的位置關(guān)系;

(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合P={x|-2≤x≤10},Q={x|1-mx≤1+m}.

(1)求集合RP;

(2)若PQ,求實數(shù)m的取值范圍;

(3)若PQQ,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團”、“吉他協(xié)會”等五個社團,若每名同學(xué)必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中沒有人參加“演講團”的不同參加方法數(shù)為( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

同步練習(xí)冊答案