2.已知$f(x)=\left\{\begin{array}{l}3({a-1})x+4a\;,\;\;x<1\\{log_a}x\;,\;\;x≥1\end{array}\right.$是R上的減函數(shù),那么a的取值范圍是[$\frac{3}{7}$,1).

分析 由題意可得$\left\{\begin{array}{l}{3(a-1)<0}\\{0<a<1}\\{{log}_{a}1≤3(a-1)+4a}\end{array}\right.$,由此求得a的范圍.

解答 解:已知$f(x)=\left\{\begin{array}{l}3({a-1})x+4a\;,\;\;x<1\\{log_a}x\;,\;\;x≥1\end{array}\right.$是R上的減函數(shù),
∴$\left\{\begin{array}{l}{3(a-1)<0}\\{0<a<1}\\{{log}_{a}1≤3(a-1)+4a}\end{array}\right.$,求得 $\frac{3}{7}$≤a<1,
故答案為:[$\frac{3}{7}$,1).

點評 本題主要考查函數(shù)的單調(diào)性的性質(zhì),對數(shù)函數(shù)、一次函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若sinα=$\frac{5}{13}$,α為第二象限角,則cosα=( 。
A.-$\frac{5}{13}$B.-$\frac{12}{13}$C.$\frac{5}{13}$D.$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.420和882的最大公約數(shù)是42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$tan\;α+\frac{1}{tan\;α}=\frac{5}{2}$,求$2{sin^2}({3π-α})-3cos({\frac{π}{2}+α})sin({\frac{3π}{2}-α})+2$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.關(guān)于函數(shù)f(x)=xln|x|的五個命題:
①f(x)在區(qū)間(-∞,-$\frac{1}{e}$)上是單調(diào)遞增函數(shù);
②f(x)只有極小值點,沒有極大值點;
③f(x)>0的解集是(-1,0)∪(0,1);
④函數(shù)f(x)在x=1處的切線方程為x-y+1=0;
⑤函數(shù)g(x)=f(x)-m最多有2個零點.
其中,是真命題的有①(請把真命題的序號填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)g(x)=a-x3($\frac{1}{e}≤x≤e\;,\;e$為自然對數(shù)的底數(shù))與h(x)=3lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是[1,e3-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}的通項公式為an=$\frac{n-2017.5}{n-2016.5}$,則該數(shù)列中( 。
A.最小項為-1,最大項為3B.最小項為-1,無最大項
C.無最小項,最大項為3D.既無最小項,也無最大項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知四面體ABCD,$\overrightarrow{DA}$=$\overrightarrow{a}$,$\overrightarrow{DB}$=$\overrightarrow$,$\overrightarrow{DC}$=$\overrightarrow{c}$,點M在棱DA上,$\overrightarrow{DM}$=3$\overrightarrow{MA}$,N為BC中點,則$\overrightarrow{MN}$=( 。
A.-$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$B.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$C.-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知動圓過定點F(1,0),且與定直線l:x=-1相切.
(1)求動圓圓心的軌跡C的方程;
(2)直線l與C相交所得弦AB中點為(2,1),O為坐標(biāo)原點,求$\overrightarrow{OA}•\overrightarrow{OB}$及$|{\overrightarrow{AB}}|$的值.

查看答案和解析>>

同步練習(xí)冊答案