10.點(diǎn)(1,2)和(-1,m)關(guān)于kx-y+3=0對稱,則m+k=5.

分析 根據(jù)中點(diǎn)坐標(biāo)公式和點(diǎn)(1,2)和(-1,m)確定的直線與kx-y+3=0垂直,即斜率乘積為-1,可得m,k得答案.

解答 解:由題意,點(diǎn)(1,2)和(-1,m)關(guān)于kx-y+3=0對稱,
則點(diǎn)($\frac{1-1}{2}$,$\frac{2+m}{2}$)在直線kx-y+3=0上,
可得:$\frac{2+m}{2}=3$,解得m=4.
那么:點(diǎn)(1,2)和(-1,4)確定的直線的斜率為-1與kx-y+3=0垂直,
故得:k=1
則m+k=4+1=5,
故答案為:5.

點(diǎn)評 本題考查了點(diǎn)關(guān)于直線對稱的求法,考查了斜率公式的運(yùn)用和中點(diǎn)坐標(biāo)的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,O為△ABC的外心,D為BC邊上的中點(diǎn),c=4,$\overrightarrow{AO}$•$\overrightarrow{AD}$=5,sinC+sinA-4sinB=0,則cosA=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某中學(xué)號召學(xué)生在暑假期間至少參加一次社會(huì)公益活動(dòng)(以下簡稱活動(dòng)).該校文學(xué)社共有100名學(xué)生,他們參加活動(dòng)的次數(shù)統(tǒng)計(jì)如圖所示,則從文學(xué)社中任意選1名學(xué)生,他參加活動(dòng)次數(shù)為3的概率是( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{6}{10}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二項(xiàng)式${({x+\frac{1}{x}})^n}$的展開式中各項(xiàng)的系數(shù)和為256.
(Ⅰ)求n;
(Ⅱ)求展開式中的常數(shù)項(xiàng).(結(jié)果用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知?jiǎng)狱c(diǎn)P(x,y)到定點(diǎn)A(2,0)的距離與到定直線l:x=-2的距離相等.
(Ⅰ) 求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ) 已知點(diǎn)B(-3,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線y=ax2(a≠0)的焦點(diǎn)坐標(biāo)為( 。
A.(0,$\frac{a}{4}$)或(0,-$\frac{a}{4}$)B.(0,$\frac{1}{4a}$)或(0,-$\frac{1}{4a}$)C.$(0,\frac{1}{4a})$D.$(\frac{1}{4a},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.與圓x2+y2=1及圓x2+y2-8x+7=0都外切的圓的圓心在( 。
A.一個(gè)圓上B.一個(gè)橢圓上C.雙曲線的一支上D.拋物線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E,F(xiàn)分別為BC,PA的中點(diǎn).
(1)求證:BF∥面PDE
(2)求點(diǎn)C到面PDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列三角函數(shù)值大小比較正確的是( 。
A.sin$\frac{19π}{8}$<cos$\frac{14π}{9}$B.sin(-$\frac{54π}{7}$)<sin(-$\frac{63π}{8}$)
C.tan(-$\frac{13π}{4}$)>tan(-$\frac{17π}{5}$)D.tan138°>tan143°

查看答案和解析>>

同步練習(xí)冊答案