分析 (Ⅰ) 根據(jù)拋物線(xiàn)的定義和題設(shè)中的條件可知點(diǎn)P是以F(2,0)為焦點(diǎn),以x=-2為準(zhǔn)線(xiàn)的拋物線(xiàn),焦點(diǎn)到準(zhǔn)線(xiàn)的距離p=4,進(jìn)而求得拋物線(xiàn)方程.
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2),由題意,直線(xiàn)PQ的方程代入化簡(jiǎn),利用角平分線(xiàn)的性質(zhì)可得kPB=-kQB,可化為:-16tm+(3+m)8t=0,所以:m=3,l:x=ty+3,即可得到定點(diǎn).
解答 解:(Ⅰ)設(shè)動(dòng)圓圓心P(x,y),則由拋物線(xiàn)定義易得:點(diǎn)P是以F(2,0)為焦點(diǎn),以x=-2為準(zhǔn)線(xiàn)的拋物線(xiàn),
動(dòng)圓圓心的軌跡方程為:y2=8x
(Ⅱ) 設(shè)兩點(diǎn)P(x1,y1),Q(x2,y2),設(shè)不垂直于x軸的直線(xiàn):l:x=ty+m(t≠0),
則$\left\{{\begin{array}{l}{x=ty+m}\\{{y^2}=8x}\end{array}}\right.$有:y2-8ty-8m=0,所以:y1+y2=8t,y1y2=-8m
因?yàn)閤軸是∠PBQ的角平分線(xiàn),
所以:kBP+kBQ=0,即:$\frac{y_1}{{{x_1}+3}}+\frac{y_2}{{{x_2}+3}}=0$,即:2ty1y2+(m+3)(y1+y2)=0
則:-16tm+(3+m)8t=0,
所以:m=3,l:x=ty+3,
所以直線(xiàn)l過(guò)定點(diǎn)(3,0).
點(diǎn)評(píng) 本題綜合考查了拋物線(xiàn)的定義與標(biāo)準(zhǔn)方程、直線(xiàn)與拋物線(xiàn)相交問(wèn)題、直線(xiàn)方程及過(guò)定點(diǎn)問(wèn)題、斜率計(jì)算公式等基礎(chǔ)知識(shí),考查了推理能力、數(shù)形結(jié)合的思想方法、計(jì)算能力、分析問(wèn)題和解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,-4) | B. | $(-\frac{1}{2},-1)$ | C. | (-2,-4)或$(-\frac{1}{2},-1)$ | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,0) | B. | ($\frac{1}{16}$,0) | C. | (0,$\frac{1}{16}$) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com