已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
5
,若將橢圓繞它的右焦點(diǎn)按逆時針方向旋轉(zhuǎn)
π
2
后,所得橢圓的一條準(zhǔn)線的方程是y=
16
3
,則原來橢圓的方程是( 。
A、
x2
129
+
y2
48
=1
B、
x2
100
+
y2
64
=1
C、
x2
25
+
y2
16
=1
D、
x2
16
+
y2
9
=1
考點(diǎn):橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)離心率和新橢圓的準(zhǔn)線方程求出a,b,c的值,代入可直接求出原來方程.
解答: 解:由題意可知,e=
c
a
=
3
5
,y=
a
c
-c=
16
3
∵a2=b2+c2
∴c=3,a=5,b=4
∴原橢圓方程為
x2
25
+
y2
16
=1

故選:C.
點(diǎn)評:本題主要考查橢圓方程的標(biāo)準(zhǔn)方程,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2,若a2f(2x)≤4af(x)+3f(x+1)在x∈[1,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、a≤-
1
2
或a≥
3
2
B、-
1
2
≤a≤
3
2
C、-
3
2
≤a≤
1
2
D、a≤-
3
2
或a≥
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是(  )
A、極大值比極小值大
B、極小值不一定比極大值小
C、極大值比極小值小
D、極小值不大于極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的唯一一個零點(diǎn)同時在區(qū)間(0,16),(0,8),(0,4),(0,2)內(nèi),則下列結(jié)論中正確的是(  )
A、f(x)在區(qū)間(0,1)內(nèi)一定有零點(diǎn)
B、f(x)在區(qū)間[2,16)內(nèi)沒有零點(diǎn)
C、f(x)在區(qū)間(0,1)或(1,2)內(nèi)一定有零點(diǎn)
D、f(x)在區(qū)間(1,16)內(nèi)沒有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=-x2+bx+c圖象的最高點(diǎn)為(-1,-3),則b與c的值是(  )
A、b=2,c=4
B、b=2,c=-4
C、b=-2,c=-4
D、b=-2,c=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,2)、B(-1,4)、C(5,2).
(1)求AB邊中線所在直線方程;                   
(2)求AB邊中垂線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a3-a1=3,a1+a2=3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an2,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求中心在原點(diǎn),焦點(diǎn)在x軸上,焦距等于4,且經(jīng)過點(diǎn)P(3,-2
6
)
的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(2,-2)
(Ⅰ)設(shè)
c
=4
a
+
b
,求(
b
c
a
;
(Ⅱ)求向量
a
b
方向上的投影.

查看答案和解析>>

同步練習(xí)冊答案