二次函數(shù)y=-x2+bx+c圖象的最高點為(-1,-3),則b與c的值是( 。
A、b=2,c=4
B、b=2,c=-4
C、b=-2,c=-4
D、b=-2,c=4
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:由已知中二次函數(shù)y=-x2+bx+c圖象的最高點為(-1,-3),根據頂點坐標構造關于b,c的方程,解得答案.
解答: 解:∵二次函數(shù)y=-x2+bx+c圖象的最高點為(-1,-3),
即二次函數(shù)y=-x2+bx+c圖象的頂點為(-1,-3),
b
2
=-1,
4c-b2
4
=-3,
解得b=-2,c=-4,
故選:C
點評:本題考查的知識點是二次函數(shù)的圖象和性質,熟練掌握二次函數(shù)的圖象和性質,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)m,n,s,t滿足:tm2+4n-3sn-2tlnm=0且3s-t-4=0,則 m2+n2+s2+t2-2ms-2nt的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程3|sinx|=sinx+a在[0,2π)上恰好由四個解,那么實數(shù)a的取值范圍是(  )
A、2<a<4
B、2≤a<4
C、0≤a<2
D、0<a<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩平行線x+3y-4=0與2x+6y-13=0間的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x+2)=x2-4x+4,求f(5)及f(x);
(2)寫出f(x)=x2-2x的單調遞增區(qū)間,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
5
,若將橢圓繞它的右焦點按逆時針方向旋轉
π
2
后,所得橢圓的一條準線的方程是y=
16
3
,則原來橢圓的方程是( 。
A、
x2
129
+
y2
48
=1
B、
x2
100
+
y2
64
=1
C、
x2
25
+
y2
16
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a,b,c,若a=18,∠A=45°,解三角形時有兩解,則邊b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y-1=0與橢圓x2+by2=
3
4
相交于兩個不同點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四邊形ABCD中,若AC=
5
,BD=2,則(
AB
+
DC
)•(
AC
+
BD
)=
 

查看答案和解析>>

同步練習冊答案