【題目】已知函數(shù)f(x)= +3(﹣1≤x≤2).
(1)若λ= 時,求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最小值是1,求實數(shù)λ的值.

【答案】
(1)解: (﹣1≤x≤2)

設(shè) ,得g(t)=t2﹣2λt+3( ).

時, ).

所以 ,

所以 ,

故函數(shù)f(x)的值域為[ ]


(2)解:由(1)g(t)=t2﹣2λt+3=(t﹣λ)2+3﹣λ2

①當 時, ,

,得 ,不符合舍去;

②當 時, ,

令﹣λ2+3=1,得 ,或 ,不符合舍去;

③當λ>2時,g(t)min=g(2)=﹣4λ+7,

令﹣4λ+7=1,得 ,不符合舍去.

綜上所述,實數(shù)λ的值為


【解析】(1)化簡 (﹣1≤x≤2),再利用換元法得g(t)=t2﹣2λt+3( );從而代入λ= 求函數(shù)的值域;(2)g(t)=t2﹣2λt+3=(t﹣λ)2+3﹣λ2 ),討論λ以確定函數(shù)的最小值及最小值點,從而求λ.
【考點精析】本題主要考查了函數(shù)的值域和函數(shù)的最值及其幾何意義的相關(guān)知識點,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的;利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.

(1)如果按照性別比例分層抽樣,可得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)

(2)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應(yīng)如下表:

若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務(wù).該地有, 兩種“共享單車”(以下簡稱型車, 型車).某學習小組7名同學調(diào)查了該地區(qū)共享單車的使用情況.

(Ⅰ)某日該學習小組進行一次市場體驗,其中4人租到型車,3人租到型車.如果從組內(nèi)隨機抽取2人,求抽取的2人中至少有一人在市場體驗過程中租到型車的概率;

(Ⅱ)根據(jù)已公布的2016年該地區(qū)全年市場調(diào)查報告,小組同學發(fā)現(xiàn)3月,4月的用戶租車情況城現(xiàn)如表使用規(guī)律.例如,第3個月租型車的用戶中,在第4個月有的用戶仍租型車.

第3個月

第4個月

租用型車

租用型車

租用型車

租用型車

若認為2017年該地區(qū)租用單車情況與2016年大致相同.已知2017年3月該地區(qū)租用, 兩種車型的用戶比例為1:1,根據(jù)表格提供的信息,估計2017年4月該地區(qū)租用兩種車型的用戶比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列幾種說法: ①若logablog3a=1,則b=3;
②若a+a1=3,則a﹣a1=
③f(x)=log(x+ 為奇函數(shù);
④f(x)= 為定義域內(nèi)的減函數(shù);
⑤若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且f(2)=1,則f(x)=log x,其中說法正確的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的,得到曲線,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系, 的極坐標方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點且關(guān)于軸對稱的兩條直線分別交曲線、,且點在第一象限,當四邊形的周長最大時,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)的圖象是由y=sin2x向右平移 得到,則下列結(jié)論正確的是(
A.f(0)<f(2)<f(4)
B.f(2)<f(0)<f(4)
C.f(0)<f(4)<f(2)
D.f(4)<f(2)<f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的右焦點為F,右頂點為A,設(shè)離心率為e,且滿足,其中O為坐標原點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為微信控,否則稱其為非微信控,調(diào)查結(jié)果如下:


微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

1)根據(jù)以上數(shù)據(jù),能否有的把握認為微信控性別有關(guān)?

2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中微信控非微信控的人數(shù);

3)從(2)中抽取的5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中微信控的人數(shù)為,試求的分布列與數(shù)學期望.

參考公式: ,其中

參考數(shù)據(jù):


050

040

025

005

0025

0010


0455

0708

1321

3840

5024

6635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=f(x)最大值為3,且f(﹣4)=f(0)=﹣1
(1)求f(x)的解析式;
(2)求f(x)在[﹣3,3]上的最值.

查看答案和解析>>

同步練習冊答案